JOURNAL ID

The Name of Journal : Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences

Founded in : 2014

ISSN : 2667-6702

Issued in : December 15, 2019

Publisher of Journal : IEDSR Association

Editor : Dr. Almaz AHMETOV

Director of Journal : IEDSR Association

Scientific Committee

Dr. Jean-Philippe PRAENE Université de La Réunion
Dr. Artur ABRAGIN Bauman Moscow State Technical University
Dr. Jayanthiny MAHINTHAN Eastern University
Dr. Gulbakhhar TAVALDIEVA Tashkent Chemical-Technological Institute
Dr. Zamirgul KAZAKBAEVA Manas University
Dr. Esbolat KULSABIRULY Eurasian National University
Dr. Irfan AKHTAR Pakistan Institute of Engineering & Applied Sciences
CONTENTS

Abidin SAHİNOĞLU & Mehmet AKKAS & Mehmet Ali DONERTAS
INVESTIGATION OF THE EFFECTS OF THE CUTTING PARAMETERS AND COOLANT ON THE SURFACE ROUGHNESS VALUE IN THE MACHINING OF AISI 4340 WITH CBN TOOLS
Pages 1-8

Nilgün ONURSAL & Ali Rıza KUL & Ömer YAVUZ
Pb(II) İYONLARININ AKTİVE EDİLMİŞ KARIŞIK TİPTEKİ KİL İLE SUDAN UZAKLAŞTIRILMASI, İZOTERM, KİNETİK VE TERMODİNAMİK PARAMETRELERİN İNCELENMESİ
Pages 9-22

Mustafa DANACI & Mamadou Alimou DIALLO
A NEW HYBRID FRUIT FLY OPTIMIZATION ALGORITHM FOR SOLVING BENCHMARK PROBLEMS
Pages 23-27

Abidin ŞAHİNOĞLU
INVESTIGATION OF THE EFFECTS OF TOOL WEAR ON TEMPERATURE AND SURFACE ROUGHNESS VALUE IN THE DIN 1.2343 MATERIAL MACHINING
Pages 28-32

Alper K. DEMIR & Sedat BILGILI
PERFORMANCE EVALUATION OF RPL OBJECTIVE FUNCTIONS WITH CoAP IN LOW POWER AND LOSSY NETWORKS
Pages 33-39

Mustafa DANACI & Zaheer AKHDIR
A NOVEL HYBRID BAT CROW SEARCH ALGORITHM FOR SOLVING OPTIMIZATION PROBLEMS
Pages 40-45

Nilgün ONURSAL & Ali Rıza KUL & Mehmet Fırat BARAN
CU(II) İYONLARININ AKTİVE EDİLMİŞ KARIŞIK TİPTEKİ KİL İLE SUDAN UZAKLAŞTIRILMASI, İZOTERM, KİNETİK VE TERMODİNAMİK PARAMETRELERİN İNCELENMESİ
Pages 46-59
Mustafa DANACI & Bahadur ALIZADA
AN IMPROVEMENT OF HYBRID WHALE OPTIMIZATION ALGORITHM
Pages 60-68

Mehmet Fırat BARAN & Hilal ACAY & Cumali KESKİN & Hüsamettin AYGÜN & Ayfer YILDIRIM
ÇÖREK OTU BITKISI (Nigella sativa L.) ÖZÜTÜ KULLANILARAK TiO₂NP’lerin
SENTEZI VE ANTIMIKROBIYAL ÖZELLİKLERİNİN BELIRLENMESİ
Pages 69-75

Sümeyye AKBABA & Özge Yalçın ERCOŞKUN
MERKEZ ANKARA PROJESİ VE EKOLOJİK KENTSEL TASARIM
Pages 76-94

Behiye ÇELLİK & Gülşah BENGIŞU
HARRAN OVASI SULU KOŞULLARINDA İKİNCİ ÜRÜN OLARAK
YETİŞTİRİLEN İKİ MISIR ÇEŞİTİNDE FARKLI AZOT DOZLARININ HASIL VE
TANE VERİMİ İLE BAZI TARIMSAL KARIKTERLERİ ETKİLERİ ÜZERİNE
BİR ARAŞTIRMA
Pages 95-99

Ali Burak ASLAN & Özge Yalçın ERCOŞKUN
SÜRDÜRÜLEBİLİR YEREL GELİŞMEDE YAVAŞ ŞEHİR HAREKETİ:
ANKARA – GÜDÜL ÖRNEĞİ
Pages 100-114

Yakup ALKIŞ & Mustafa OKANT
YIELD AND YIELD COMPONENTS OF SOME COMMON VETCH (Vicia sativa L.)
VARIETIES IN ECOLOGICAL CONDITIONS OF CEYLANPINAR
Pages 115-120

Alper K. DEMIR
IMPACT OF RADIO PROPAGATION MODELS ON A CROSS-LAYER PROTOCOL
TO PROVISION QoS IN WIRELESS MULTIMEDIA SENSOR NETWORKS
Pages 120-128
INVESTIGATION OF THE EFFECTS OF THE CUTTING PARAMETERS AND COOLANT ON THE SURFACE ROUGHNESS VALUE IN THE MACHINING OF AISI 4340 WITH CBN TOOLS

Abidin SAHINOGLU
Çankırı Karatekin University

Mehmet AKKAS
Kastamonu University

Mehmet Ali DONERTAS
Çankırı Karatekin University

ABSTRACT
With the heat treatment applied to the workpiece, the material gains are abrasion resistance, friction resistance, thermal resistance and strength. However, hardening of the material makes to machining is difficult. Advances in machine tool and CBN insert technology have facilitated the machining of hard materials. Since CBN tools also prevent the increase of temperature, the use of coolant is not required. In addition, achieving a grinding quality surface makes it possible to use hard turning as an alternative to grinding. In this experimental study, AISI 4340 material with CBN tooling experiments which were increased to 63 HRC hardness by heat treatment were applied. Cutting is done under cooling and dry cutting conditions. Machining experiments were carried out at 3 different cutting speeds and 3 different feed rate at constant depth of cut. It was observed that surface roughness value increased with increasing feed rate. It was observed that dry cutting conditions decreased the surface roughness value in a small amount.

Keywords: AISI 4340, hard turning, CBN, surface roughness

Introduction
The increase in world population and economic levels has led to the use of more machines or devices. The use of more technological devices has led to more energy consumption. Processing of raw materials and production of these devices causes energy consumption. Not only the production phase, but much of the energy consumption occurs in the use of the devices. Therefore, the efficiency of machines and devices should be high and should be produced with minimum energy. In the efficiency of machines and devices, the surface quality of the machine parts is of great importance. At the same time, reducing machine weights reduces friction. Reducing the weight of the machine makes it both more efficient and lower raw material consumption. For all these reasons, the machinability of AISI 4340 material was investigated by a lot of researcher [1-4]. The material has been given high strength by heat treatment. It is aimed to make the machine part work efficiently by the attention to the good surface quality. The processing time is kept short in order to minimize costs. Cutting parameters have been examined to minimize energy consumption.

Energy consumption is one of the main factors in the manufacturing industry[5-8]. Because a significant part of the energy consumption belongs to the manufacturing industry. So the solution of many problems in energy consumption belongs to the manufacturing industry. The type of energy used in the manufacturing industry is electrical energy. Most of the electrical energy is obtained from fossil fuels (coal, oil and natural gas). As a result of combustion of fossil fuels, the emitted gases accumulate in the atmosphere. These gases accumulate in the atmosphere, creating a greenhouse gas effect. It causes the rays coming from the sun to cling and increase the temperature on our planet. This increase in temperature causes the glaciers to melt and increase the water level. In addition, an increase in temperature causes an increase in evaporation. Clouds formed by increasing evaporation cause heavy rainfall or hail. Causes of torrential rains, floods and disasters. Causes loss of life and property. It causes damage to agricultural land and decreases grain products. It also causes damage to fruits and vegetables. These conditions cause an adequate nutrition problem. Therefore, health problems due to malnutrition are likely to occur.
Energy efficiency can be achieved with higher quality products. It is very important for the quality of the products that the surface roughness value is low [9-11]. Because the lower roughness value results in lower friction force. Lower friction forces less heat generation and less energy consumption. Transportation, textile, food, mold, medicine, furniture, construction, agriculture, such as the use of all areas of life in the manufacture of machines that will provide a good surface quality energy saving is at a very high level.

Another concept that is as important as the surface quality of materials; high abrasion and friction resistance. It is possible to obtain these properties by heat treatment with very low cost. It is also possible to increase the strength of the material up to 3 times. Therefore, the material used is reduced by 3 times. Lower material weight also results in lower frictional forces. It is of great importance to examine the workability conditions of these materials, which have been widely used with the developing technology in recent years.

In this study; In order to produce high quality products in a short time with minimum energy consumption, a detailed examination is provided in this study. The effects of the parameters were analyzed by statistical methods. Mathematical models have been extracted.

Materials and Methods
The use of AISI 4340 materials is increasing day by day. Because high strength, heat treatment suitability, abrasion and friction resistance meet many expectations in the industry. In addition, the high surface quality achieved in hard turning of the material is also of great importance. Therefore, AISI 4340 material of 50 mm diameter and 250 mm length was selected. The center was drilled before the material was hardened. The workpiece material was allowed to stand at 950 C for 2 hours, then was suddenly cooled in oil. Tempering at 350 C was done to get the tension of the material. It was tested whether the desired properties were acquired or not. Hardness value of 50 HRC was reached. The material is connected between tailstock and mirror. Some material was removed from the surface and prepared for processing experiments.

These materials need to be processed on high-rigidity machines. Therefore, TTC 630 model CNC lathe of TAKSAN company was used in this experimental study. This machine has 20 KW power. The machine tool does not lose its precision at high cutting speeds.

Inserts with Sandvik Coromant DCGW11T304 geometry are used for the turning of hard materials. Coolant was used in the cutting process. The tool holder DDJNR 2525K was used. The tool holder is connected at a distance of 10 mm to reduce vibration. In determining the cutting parameters, data in the literature and tool catalog values were taken into consideration.

At the time of Machining, UNI-T UT 201 clamp multimeter was used to measure the current value. A phase value was measured. The voltage values are taken from the regulator. Total power consumption is calculated by multiplying the total time.

Immediately after the machining test, the surface roughness value was measured with the Mitutoyo SJ 201 roughness tester. Measurements were taken at 3 different points and the arithmetic mean was calculated. The sampling range was selected as 0.8.

Experiment results
Experimental results and predictive values obtained at 2 different cutting conditions such as dry cutting conditions (1) and the use of coolant at a constant depth of chip depth of 0.1 mm, 3 different cutting speeds, 3 different feed rate, are given in Figure 1.
<table>
<thead>
<tr>
<th>Deney No</th>
<th>C.C.</th>
<th>V (m/min)</th>
<th>F (mm/rev)</th>
<th>Ra(µm) (Exp.)</th>
<th>Ra(µm) (Esti.)</th>
<th>Current(A) (Exp.)</th>
<th>Current(A) (Esti.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>140</td>
<td>0.04</td>
<td>0.28</td>
<td>0.290</td>
<td>2.46</td>
<td>2.453</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>140</td>
<td>0.06</td>
<td>0.59</td>
<td>0.607</td>
<td>2.51</td>
<td>2.528</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>140</td>
<td>0.08</td>
<td>1.91</td>
<td>1.923</td>
<td>2.6</td>
<td>2.603</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>160</td>
<td>0.04</td>
<td>0.32</td>
<td>0.283</td>
<td>2.54</td>
<td>2.549</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>160</td>
<td>0.06</td>
<td>0.55</td>
<td>0.618</td>
<td>2.65</td>
<td>2.624</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>160</td>
<td>0.08</td>
<td>2.01</td>
<td>1.953</td>
<td>2.71</td>
<td>2.699</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>180</td>
<td>0.04</td>
<td>0.4</td>
<td>0.281</td>
<td>2.65</td>
<td>2.646</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>180</td>
<td>0.06</td>
<td>0.59</td>
<td>0.635</td>
<td>2.71</td>
<td>2.721</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>180</td>
<td>0.08</td>
<td>1.99</td>
<td>1.989</td>
<td>2.79</td>
<td>2.796</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>140</td>
<td>0.04</td>
<td>0.31</td>
<td>0.290</td>
<td>2.44</td>
<td>2.422</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>140</td>
<td>0.06</td>
<td>0.69</td>
<td>0.607</td>
<td>2.48</td>
<td>2.495</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>140</td>
<td>0.08</td>
<td>1.9</td>
<td>1.923</td>
<td>2.55</td>
<td>2.568</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>160</td>
<td>0.04</td>
<td>0.24</td>
<td>0.283</td>
<td>2.47</td>
<td>2.470</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>160</td>
<td>0.06</td>
<td>0.65</td>
<td>0.618</td>
<td>2.58</td>
<td>2.543</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>160</td>
<td>0.08</td>
<td>1.98</td>
<td>1.953</td>
<td>2.61</td>
<td>2.617</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>180</td>
<td>0.04</td>
<td>0.2</td>
<td>0.281</td>
<td>2.49</td>
<td>2.518</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>180</td>
<td>0.06</td>
<td>0.69</td>
<td>0.635</td>
<td>2.59</td>
<td>2.592</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>180</td>
<td>0.08</td>
<td>1.98</td>
<td>1.989</td>
<td>2.68</td>
<td>2.665</td>
</tr>
</tbody>
</table>

Figure 1. Estimated results in experimental studies and mathematical models obtained

Surface roughness

As shown in Figure 1, the surface roughness value increases with increasing feed rate. The depth of the helical channels on the surface increases due to the increase in the feed rate. At lower feed rates, the difference between the high and low zones decreases. Therefore, the surface roughness value decreases.

![Main Effects Plot for Ra (µm)](image)

Figure 2. Effects of cooling method, cutting speed and feed rate on surface roughness value

As shown in Figure 2, the effect of the cutting parameter on the surface roughness value when remove material with CBN tools. Because of the manufacturing technology of CBN tools, high hardness materials (55-65 HRC) are processed without the use of coolant. The feed rate appears to have a significant impact. The increase in the feed rate causes deterioration of surface quality.
The ANOVA results of the surface roughness values are given in Figure 4.

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
<th>Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>5</td>
<td>9.37195</td>
<td>9.37195</td>
<td>1.87439</td>
<td>486.28</td>
<td>0.000</td>
<td>99.5</td>
</tr>
<tr>
<td>Linear</td>
<td>2</td>
<td>8.36911</td>
<td>8.36911</td>
<td>4.18455</td>
<td>1085.62</td>
<td>0.000</td>
<td>88.9</td>
</tr>
<tr>
<td>V (m/min)</td>
<td>1</td>
<td>0.00241</td>
<td>0.00241</td>
<td>0.00241</td>
<td>0.62</td>
<td>0.445</td>
<td>0.0</td>
</tr>
<tr>
<td>F (mm/rev)</td>
<td>1</td>
<td>8.36670</td>
<td>8.36670</td>
<td>8.36670</td>
<td>2170.62</td>
<td>0.000</td>
<td>88.8</td>
</tr>
<tr>
<td>Square</td>
<td>2</td>
<td>1.00003</td>
<td>1.00003</td>
<td>0.50001</td>
<td>129.72</td>
<td>0.000</td>
<td>10.6</td>
</tr>
<tr>
<td>V (m/min)*V (m/min)</td>
<td>1</td>
<td>0.00003</td>
<td>0.00003</td>
<td>0.00003</td>
<td>0.01</td>
<td>0.937</td>
<td>0.0</td>
</tr>
<tr>
<td>F (mm/rev)*F (mm/rev)</td>
<td>1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>259.44</td>
<td>0.000</td>
<td>10.6</td>
</tr>
<tr>
<td>Interaction</td>
<td>1</td>
<td>0.00281</td>
<td>0.00281</td>
<td>0.00281</td>
<td>0.73</td>
<td>0.410</td>
<td>0.0</td>
</tr>
<tr>
<td>V (m/min)*F (mm/rev)</td>
<td>1</td>
<td>0.00281</td>
<td>0.00281</td>
<td>0.00281</td>
<td>0.73</td>
<td>0.410</td>
<td>0.0</td>
</tr>
<tr>
<td>Residual Error</td>
<td>12</td>
<td>0.04625</td>
<td>0.04625</td>
<td>0.00385</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Lack-of-Fit</td>
<td>3</td>
<td>0.00705</td>
<td>0.00705</td>
<td>0.00235</td>
<td>0.54</td>
<td>0.667</td>
<td>0.1</td>
</tr>
<tr>
<td>Pure Error</td>
<td>9</td>
<td>0.03920</td>
<td>0.03920</td>
<td>0.00436</td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>9.41820</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

According to the variance analysis, the parameter which has the greatest effect on the surface roughness value is the feed rate. It has an effect of 99.5%. This effect is so high that the number of parameters is limited. If one of the input parameters is tool radius, this effect rate may be slightly reduced.

\[
Ra = 3.11 - 0.00410417 * V - 115.750 * f + 0.00000625 * V^2 + 1250 * f^2 + 0.0468750 * V * f \\
R^2 = 99.51\% \quad R^2(\text{pred}) = 98.85\%
\]

With the regression formula obtained at 95% confidence interval, highly accurate experimental results can be predicted.
Mathematical model was obtained depending on cutting speed and feed rate. A simple mathematical model and experimental results are very similar. Therefore, it is possible to predict the surface roughness value at the desired cutting speed and feed rate.

Current Current Rating

The ANOVA results of the instantaneous current values are given in Figure 6.

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>5</td>
<td>0.165706</td>
<td>0.165706</td>
<td>0.033141</td>
<td>84.22</td>
<td>0.000</td>
</tr>
<tr>
<td>Linear</td>
<td>3</td>
<td>0.158689</td>
<td>0.158689</td>
<td>0.052896</td>
<td>134.42</td>
<td>0.000</td>
</tr>
<tr>
<td>C.C.</td>
<td>1</td>
<td>0.029606</td>
<td>0.029606</td>
<td>0.029606</td>
<td>75.23</td>
<td>0.000</td>
</tr>
<tr>
<td>V (m/min)</td>
<td>1</td>
<td>0.063075</td>
<td>0.063075</td>
<td>0.063075</td>
<td>160.28</td>
<td>0.000</td>
</tr>
<tr>
<td>F (mm/rev)</td>
<td>1</td>
<td>0.066008</td>
<td>0.066008</td>
<td>0.066008</td>
<td>167.74</td>
<td>0.000</td>
</tr>
<tr>
<td>Interaction</td>
<td>2</td>
<td>0.007017</td>
<td>0.007017</td>
<td>0.003508</td>
<td>8.92</td>
<td>0.004</td>
</tr>
<tr>
<td>C.C.*V (m/min)</td>
<td>1</td>
<td>0.007008</td>
<td>0.007008</td>
<td>0.007008</td>
<td>17.81</td>
<td>0.001</td>
</tr>
<tr>
<td>C.C.*F (mm/rev)</td>
<td>1</td>
<td>0.000008</td>
<td>0.000008</td>
<td>0.000008</td>
<td>0.02</td>
<td>0.887</td>
</tr>
<tr>
<td>Residual Error</td>
<td>12</td>
<td>0.004722</td>
<td>0.004722</td>
<td>0.000394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>0.170428</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Analysis of Variance for Current (A)

The most effective parameter on the current value is the feed rate. This is followed by cutting speed and cooling method. All three parameters have a certain effect on the current value.
As shown in Figures 6 and 7, the instantaneous current value increases with increasing feed rate and cutting speed. Has a significant impact on the current value.

The increase in feed rate reduces the machining time. One increases the amount of material removed in time. Therefore, the load amount per unit time increases and the instantaneous current value increases. However, as the machining time is shortened, the total power consumption or energy consumption is reduced.
Figure 9. Effects of progress and cooling on current value

The feed rate, the change in current value at dry or coolant cut is shown in figure 8. The cutting condition No. 1 is dry cutting. The cutting condition 2 is the cutting condition with coolant. The coolant did cause some current to decrease. The basilica factor is the lubricant effect of the coolant. This facilitates chip flow. Chip flow is easier to reduce the amount of load on the machine and the instantaneous current value decreases.

\[
\text{Current}(A) = 1.31556 + 0.310556 \times \text{C.C.} + 0.00725000 \times \text{V} + 3.83333 \times \text{f} - 0.00241667 \times \text{C.C.} \times \text{V} - 0.0833333 \times \text{C.C.} \times \text{f}
\]

\[
R^2 = 97.23\% \quad R^2(\text{pred}) = 94.04\% \quad R^2(\text{adj}) = 96.07\%
\]

A mathematical model of the current value based on cooling conditions, feed rate and cutting speed was established. Estimated results are obtained with a high value of 97.23% in the 95% confidence interval.

Figure 10. Comparison of experimental results and estimated values for current value

According to the obtained mathematical model, the estimated values and experimental results are very close to each other. A successful regression formula was obtained.
Results
According to the experimental results;
The most effective parameter on the surface roughness value is the feed rate. The increase in the feed rate caused the surface roughness value to increase. While the cutting speed had little effect on the surface roughness value, the cooling system was found to be ineffective.

Mathematical model of surface roughness value is obtained. It was seen that the experiments and estimated result values were very close to each other for surface roughness.

It was found that cooling, feed rate and cutting speed were effective on the instantaneous current value. With the increase in feed rate and cutting speed, instantaneous current value increases. Instantaneous current value decreases in cut using coolant.

Mathematical model of instantaneous current value is obtained. The results of the experiments showed that the estimated current values were very close to each other.

References
ÖZET

Kinetik veriler Lagergren, Ho-McKay, Weber-Morris ve Elovich modellerine uygulandığında verilerin daha çok, Ho McKay ikinci derece hız denklemine uydugunu değerlendirilmiştir. Ayrıca serbest enerji, entalpi ve entropi gibi termodinamik veriler hesaplanmış ve Pb (II) aktif kil için $\Delta H_o = 13.37 \text{ kJ/mol}$, $\Delta S_o = 0.094 \text{ kJ/mol}$ ve $\Delta G_{298} = -14.64 \text{ kJ/mol}$, $\Delta G_{308} = -15.58 \text{ kJ/mol}$, $\Delta G_{318} = -16.52 \text{ kJ/mol}$ olduğu bulunmuştur.

Anahtar kelimeler: Bakır, Kurşun, Adsorpsiyon, Kinetik, Termodinamik, Ham kil ve Aktive edilmiş kil.

ABSTRACT
In this study, modified mixed type clay are being used for removal of Pb(II) from aqueous solution. The parameters affecting the adsorption, such as temperature, concentration, pH, contact time were examined. The data were applied to the Freundlich, Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherms and Langmuir adsorption isotherm model was evaluated as the best fit in accordance with the data. Adsorption capacities of 298, 303, 313 K were found to be 13.67, 21.28 and 46.73 mg Pb/g activated clay, respectively.

When the kinetic data were applied to the Lagergren, Ho-McKay, weber-Morris and Elovich models, it was seen that the data mostly complies with the Ho-Mckay pseudo second order equation.

Also, thermodynamic data such as free energy, enthalpy and entropy were calculated and as a results show that $\Delta H_o = 13.37 \text{ kJ/mol}$, $\Delta S_o = 0.094 \text{ kJ/mol}$ ve $\Delta G_{298} = -14.64 \text{ kJ/mol}$, $\Delta G_{308} = -15.58 \text{ kJ/mol}$, $\Delta G_{318} = -16.52 \text{ kJ/mol}$ for adsorption of Pb(II) on activated clay.

Keywords: Adsorption, Clay, Copper, Lead, Heavy metal, Thermodynamics, Raw clay and Activated clay.

1.GİRİŞ

Bilinen en eski metallerden biri olan Kurşun (Pb) periyodik tablonun 14 numaralı grubunda bulunan yumuşak, gümüşi beyaz veya grimsi bir renge sahip metaldir. Kurşun dövülebilen, biçimlendirilebilen, yoğun ve zayıf elektrik iletkenliği olan bir metaldır. Antik Çağ'dan beri bilinmektedir ve Romalılar tarafından su taşma borularında uzun dönem kullanılmalarının da işaret ettiği üzere korozoya karşı dayanıklıdır. İstanbul'da ait dönemelede İran, Mısıır ve Mezopotamya da kurşundan yapılan çeşitli eşyaların bulunmasının da işaret ettiği üzere korozoya karşı dayanıklıdır. Türkiye de ise İÖ 6500 yıllarında ait olduğu tespit edilen kurşundan yapılmış bıçak Çatalhöyük'te bulunmaktadır. İlk ve orta çağ da kullanılan kurşun özellikle savaş aletlerinde, süs eşyalarında, lehim ve kaplamacılıkta tercih edilmiştir. Ayrıca tarih boyunca kurşunun tanınmış olduğu ve anaoccupu düşük erime noksattan dolayı bulunan元素onun özelliklerine dayanarak kurşun birikmesi ve nüfuz etmesini sağlanması üzerine çok ciddi bir sağlık riski doğusturmuştur. Daha sonraki yıllarda kurşunun toksitli olduğu ve general olarak:r-

Bu çalışmada adsorban olarak kil kullanılmıştır. Kil terimi kayaç anlamını taşımasının yanı sıra, toprak ve sedimenter kayaçlardaki mekanişik olarak yapılan analiz sonuçlarına göre, tanecik boyutunu yanı taneciğin iriliğini ifade eden bir kavramdır. Wentworth, 1922 yılında tanecik boyutu 4 mikrondan (1/256 mm) daha küçük olan taneciklere kil denilmesini teklif etmiştir. Uddin göre; Kil, 2µm'den (25,400 µm= 1 inç) daha küçük partikül boyutuna ve aynı kimyasal bileşime ile ortak kristal özelliğine sahip madencilik familyasın ortak ismidir. (Uddin, 2017)

Mineral özelliklerine göre oluşan gruplar;
- Klorit
- Kaolin
- Montmorillonit (smektit)
- Mika
- İllit
- Attapulgit (Malayoğlu,1995)

Kil minerali tanımlanırken, killere etki eden beş faktörün bilinmesi gerekir.
- Kilin mineral bileşimi
- İhtiva ettiği organik maddeler
- Kil dışı mineral bileşimleri
- Çözülen tuzlar ile yer değiştirebilen iyonların bulunması
- Dokusu

Bir kil minerali tanımlanmadan önce bu faktörlerin bilinmesi lazımdır. Kili meydana getiren kil minerallerinin cinsi ve bileşimi kil malzemesinin hususiyetlerine tesiri bakımından son derece önemlidir(Akıcı, 1968)

Adsorpsiyon olayı ise adsorbann yüzeyi arasındaki etkileşimi vurgulamaktadır. Ayrıca adsorpsiyon olayı maddenin hacminden ziyade yüzeyinin rol oynadığı bir süreçtir. Çünkü moleküler arasındaki kuvvetlerin sınır yüzeyinde dengelenmemesinden kaynaklanır (Berkem & Baykut, 1977). Farklı fazdaki maddeler arasındaki çekim kuvvetlerinin etkisi ile gerçekleşebilen üç tür adsorpsiyon vardır. Fiziksel adsorpsiyon (Fizisorpsiyon), kimyasal adsorpsiyon (Kemosorpsiyon), iyonik adsorpsiyon’dur.
2.MATERYAL VE METOD

2.1 Materyal

XRF ile yapılan kilin kimyasal analiz sonucu aşağıda tablo 1.de verilmiştir.

<table>
<thead>
<tr>
<th>Numune Adı</th>
<th>Kimyasal Bileşim %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO₂</td>
</tr>
<tr>
<td>Ham Kil</td>
<td>56.0</td>
</tr>
<tr>
<td>Aktive Kil</td>
<td>51.7</td>
</tr>
</tbody>
</table>

KK: 1000 °C deki kütle kaybı

2.2 Metod

Adsorpsiyon deneyleri 3 grupta yapıldı. Bunlar kinetik, izoterm ve sıcaklık deneyleridir. Deneylerde ağır metal çözeltileri 25 ml alınarak, daha önceden tartımı yapılan erlenmayer deki 0,2000’er g lık kirillerin üzerine bırakıldı. Isıtmalı çalkalayıcıda (Shaker) uygun zaman dilimlerinde çalkalanıp, katı ve sıvı fazlara ayrılmaları için 15’er dakika santrifüjlendi. Geriye kalan kir ve çözelti uzaklaştırılarak AAS cihazında analiz edildi. Adsorplanan miktarlar 2.1 denklemi kullanılarak hesaplandı.

\[q_t = \frac{(c_0 - c_e) V}{m} \]

\[q_e = \frac{(c_0 - c_e) V}{m} \]

(2.1)

2.3 Adsorpsiyon İzotermeleri ve Denklemleri

Adsorpsiyon izotermelerinin amacı adsorpsiyon mekanizmasının matematiksel yöntemlerle ifade edilmesidir. Burada elde edeceğimiz, adsorpsiyon süresince çözeltide kalma madde miktarı ile adsorbanın yüzeyinde biriken madde arasındaki dinamik dengenin olmasıdır. (Güneren, 2010)

Adsorpsiyon izotermeleri adsorpsiyon çalışmalarında en önemli etkenlerdir. Bu izotermler şöyle sıralanabilir.

- Freundlich modeli
- Langmuir denklemi
- Temkin:
- Dubinin-Radushkevich

- **Freundlich modeline göre, bir adsorbentin yüzeyinde bulunan adsorpsiyon alanları heterojendir yani farklı türden adsorpsiyon alanlarından oluşur. Linearize edilmiş Freundlich ifadesi denklem (2.2) de verilmiştir. (Baran ve ark. 2019)**

\[lnq_e = lnK_F + \frac{1}{n} lnC_e \]

(2.2)

Burada; \(K_F \) adsorpsiyon kapasitesini (L/mg); n: adsorpsiyon yoğunlukunu (birimiz) ifade eder. Langmuir’a göre, adsorbentin tek bir tabaka meydana geldiğini ve her bir adsorplayıcı noktannın bir molekül adsorpladığını kabul eder. Denge halinde maksimum adsorpsiyon kapasitesine ulaşılması ve yüzey tek tabaka ile kaplanmış olur. Langmuir, özellikle kımysal adsorpsiyonda ve daha bir çok

\[
\frac{C_e}{q_e} = \frac{C_e}{q_{max}} + \frac{1}{b q_{max}}
\]

(2.3)

\[
q_e = \frac{(C_1 - C_e) x V}{m}
\]

(2.4)

Buarda; \(q_m\) : dengedeki g adsorplayıcı başına adsorplanan madde miktarını (mg/g) ifade eder. \(C_i\): Başlangıç derişimi (mg/L) \(C_e\): denge derişimi(mg/L); \(V\): hacim (L); \(m\): adsorplayıcının kültlesi(g); \(q_{max}\): maksimum adsorpsiyon kapasitesi (mg/g); \(b\): Langmuir sabiti (L/mg)

Temkin: 1941 Yılında Temkin ve Pyzhev’in çalışmaları, adsorban ile adsorbat ve adsorpsiyon ısısı arasındaki etkileşimi inceleyerek yeni bir izoterm modeli geliştirmişlerdir. Bu çalışmada yüzeydeki tüm molekülerin enerjilerinin lineer olarak azalmasının nedeni adsorbanın yüzeyinin heterojen yapısı olmadan kaynaklanmaktadır.

Bu izotermde, adsorbe edilen Maddeler arasındaki etkileşimler dikkate alınmakla birlikte, çözeltide bulunan tüm moleküler için adsorpsiyon entalpisi hesabı geliştirilmiş. Bununla ilgili bağıntı ise 2.5 te olduğu gibi gibidir.

\[
q_e = B \ln AT + B \ln C_e
\]

(2.5)

\[B = RT/b\]

(2.6)

Buarda; \(B(j/mol)\) cinsinden adsorpsiyon ısısi ile ilgili Temkin sabiti, \(A(L/g)\) maksimum bağlanma enerjisi ile karışık gelen denge bağlanma sabiti, \(R(8,314 J/mol K)\) evrensel gaz sabiti ve \(T(Kelvin)\) mutlak çözelti sıcaklığıdır.

Dubinin-Radushkevich: Adsorpsiyon türüne belirlemek amacıyla kullanılabilir. Bu amaçla elde edilen bağıntı 2.7 olarak verilmiştir.

\[
\ln q_e = \ln q_m - K_{D-R} \varepsilon^2
\]

(2.7)

\[
es = RT \ln \left(1 + \frac{1}{C_e}\right)^2
\]

(2.8)

\[E = \frac{1}{\sqrt{2K_{D-R}}}
\]

(2.9)

Buarda \(q_e\) (mol/g) birim kütle başına adsorplanan metal miktarı, \(q_m\) (mol/g) tek tabaka kapasitesi, \(K_{D-R}\) ortalama sorpsiyon enerjisi ile ilgili aktiflik katsayısı ve \(\varepsilon\), Polanyi potansiyeli, \(C_e\) (mol/L) sulu çözeltideki değe metal derişimi, \(E (kJ/mol)\) ortalama adsorpsiyon enerjisidir ve denklem 2.7 -2.9 denklemleriyile hesaplanabilir.

D-R modeli sabitleri olan \(q_m\) ve \(K_{D-R}\) \(\ln q_e\) nin \(e^{-\varepsilon}\) ve karşı grafikte geçirilince elde edilen doğrunun eğiminden \(K_{D-R}\) kaymasından ise \(\ln q_m\) elde edilir.

Pb(II) iyonlarının aktive edilmiş karşı tip kil üzerine adsorpsiyonu, elde edilen veriler Freundlich, Langmuir, Temkin ve Dubinin-Radushkevich izoterm modellerine uyarlanarak şekil 1,2,3,4 te verilmiştir.
Şekil 1. Farklı sıcaklıklardaki Pb(II) nin aktive edilmiş karışık tip kil üzerindeki Freundlich izotermi

\[
Y_{298} = 0,1931x + 1,5749 \\
R^2 = 0,9305 \\
Y_{308} = 0,304x + 1,535 \\
R^2 = 0,9185 \\
Y_{318} = 0,5154x + 1,2864 \\
R^2 = 0,7972
\]

Şekil 2. Farklı sıcaklıklardaki Pb(II) nin aktive edilmiş karışık tip kil üzerindeki Langmuir izotermi

\[
Y_{298} = 0,0733x + 0,8414 \\
R^2 = 0,9885 \\
Y_{308} = 0,047x + 0,768 \\
R^2 = 0,9747 \\
Y_{318} = 0,0214x + 0,7229 \\
R^2 = 0,9817
\]
Şekil 3. Farklı sıcaklıklardaki Pbu(II) nin aktive edilmiş karışık tip kil üzerindeki Temkin izotermleri

\[Y_{298} = 0.5608x - 2.1266 \]
\[R^2 = 0.9342 \]
\[Y_{308} = 0.2698x - 0.3602 \]
\[R^2 = 0.8292 \]
\[Y_{318} = 0.1023x + 0.9373 \]
\[R^2 = 0.874 \]

Şekil 4. Farklı sıcaklıklardaki Pb(II) nin aktive edilmiş karışık tip kil üzerindeki D-R izotermleri

\[Y_{298} = -7E-09x - 5.0966 \]
\[R^2 = 0.9996 \]
\[Y_{308} = -8E-09x - 4.9931 \]
\[R^2 = 0.9995 \]
\[Y_{318} = -5E-09x - 6.6516 \]
\[R^2 = 0.9673 \]
Çizelge 2. Pb(II)’nin aktive edilmiş kil üzerindeki adsorpsiyonuna ait, Freundlich Langmuir, Temkin, Dubinin-Radushkevich (D-R) izoterm parametreleri.

<table>
<thead>
<tr>
<th>Freundlich İzoterm Modeli In(q_e) = ln K_F + 1/n ln C_e</th>
<th>Langmuir Adsorpsiyon İzotermi C_e/q_e = 1/K_L q_max + C_e/q_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (K)</td>
<td>Denklem</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
</tr>
</tbody>
</table>

Temkin İzoterm Modeli q_e = BlnK_T + BlnC_e

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Denklem</th>
<th>K_T</th>
<th>B</th>
<th>R^2</th>
<th>Denklem</th>
<th>K_D-R E (Kj/mol)</th>
<th>q_max (mg/g)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>8</td>
<td>0,30</td>
<td>1,783</td>
<td>0,934</td>
<td>7,10^9</td>
<td>8,5</td>
<td>1267,5</td>
<td>0,9996</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>0,91</td>
<td>3,706</td>
<td>0,829</td>
<td>4,9931</td>
<td>7,9</td>
<td>1405,8</td>
<td>0,9995</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>1,10</td>
<td>9,775</td>
<td>0,874</td>
<td>5,109-9</td>
<td>10,0</td>
<td>280,6</td>
<td>0,9817</td>
</tr>
</tbody>
</table>

Dubinin Radushkevich (D-R) İzoterm Modeli ln(q_e) = ln(q_max - B_d-R e^2 c_e/R(T+1/C_e))

Akte edilen Kıl üzerindeki Pb (II) İzoterm sonuç verilerine bakıldığında ise, Dubinin Radushkevich adsorpsiyon izoterm modeline uydu belirlenmiş olup, R^2 değerlerinin 0,99’in üzerinde olduğu bulunmuştur.

2.4. Temas Süresi ve Adsorpsiyon Kinetiği

Adsorpsiyon kinetiği, adsorplanan madde ile adsorban arasındaki temas süresini belirleyebildiği gibi, adsorpsiyonun hangi basamaklarda gerçekleştiğini de ifade etmektedir.

Kinetik modeller zamanına bağlı olarak aşağıdaki belirtilen modellerde incelenmektedir.

1. Pseudo Birinci Derece Denklem (Lagergen Denklemi)

\[\frac{dq_t}{dt} = k_1 (q_e - q_t) \]

Burada q_e (mg/g) dengede birim adsorplayıcı başına adsorplanan metal iyonu miktarı, q_t , t zamanındaki birim adsorplayıcı başına adsorplanan madde miktarını, \(k_1 \) (dk)^{-1} birinci dereceden adsorpsiyon hız sabiti olarak ifade edilir. т = 0 iken q_t = 0 ve тて q_t = q_e arasında t = 1.6 denkleminin integrali alınırsa;

\[\ln(q_e - q_t) = \ln q_e - k_1 t \]

denklemi elde edilir. т’ye karşı \(\ln(q_e - q_t) \) nin doğrusal grafiğinin eğim ve kesim noktalarından \(k_1 \) ve \(q_e \) değerleri bulunabilir (Baran ve Düz 2019).

2. Pseudo (yalancı)İkinci Derece Denklem (Ho-Mc Kay)

\[\frac{dq_t}{dt} = k_2 (q_e - q_t)^2 \]

Burada \(k_2 \), (g/mg*dk) ikinci dereceden hız sabiti, \(q_e \) (mg/g) maksimum adsorpsiyon kapasitesi, \(q_t \) (mg/g) t zamanındaki adsorpsiyon miktarıdır.
. t = 0 iken \(q_t = 0 \) ve t = t de \(q_t = q_e \) aralığında iken 1.7 denkleminin integrali alınırsa;
\[
\frac{t}{q_e} = \frac{1}{k_2 q_e} + \frac{t}{q_e}
\]
(1.8)
Denklemi oluşur. Yalancı ikinci derece kinetik model sabitleri olan \(k_2 \) ve \(q_e \), t’ye karşı \(t/q_e \) grafiğe geçirildiğinde elde edilen doğru denklemin eğim ve kaymasından elde edilir.

3. Elovich Eşitliği
\[
q_t = \frac{1}{\beta} (\ln \alpha \beta) + \frac{1}{\beta} \ln t
\]
(1.9)
Burada \(\alpha \) (mg/g*dk) başlangıç sorpsiyon hızı, \(\beta \) (g/mg) kemosorpsiyon için yüzeyi kaplama ve aktivasyon enerjisinin bir ölçüsüdür. \(\ln t \) ye karşı \(q_t \) grafiğe geçirildiğinde elde edilen eğimden \(\frac{1}{\beta} \) ve kaymasından ise \(\frac{1}{\beta} (\ln \alpha \beta) \) bulunabilir.

3. Weber-Morris Modeli (Orbak, 2009)
\[
q_t = k_i \sqrt{t} + C
\]
(1.9)
İntrapartikül difüzyon modeli 1.9 denklemi ie ifade edilmiştir. Bu ifadede \(q_t \) (mg/g), t zamandaki gram başına adsorplanan madde miktarıdır. \(k_i \) (mg/g*dk)^1/2 hız sabitidir. \(\sqrt{t} \) ye karşı, \(q_t \) grafiğe geçirildiğinde çok basamaklı grafik eğrileri elde edilebilir. Adsorpsiyon işlemi üç ana aşamada gerçekleşebilir. Bunlar,

I- Film difüzyonu
II- Intrapartikül veya gözenek difüzyonu
III- İç bölgenin yüzeyindeki adsorpsiyon dur.

Pb II’nin aktive edilen kil üzerine dék sürenin etkisi incelendiğinde ilk 30 dakika adsorpsiyon olayının hızlı gerçekleştiği ve 120-150 dakika arasında dengeye geldiği görülüktü. Bunun nedeni başlangıçta adsorbant’ın yüzeyinde aktif yerlerin boş olduğu, böylece Cu(II) iyonlarının boş olan aktif merkezlerle reaksiyon verdiği, zaman ilerledikçe aktif merkezlerin sayısı azaldığı için reaksiyonun hızı da azalmaktadır.

Adsorpsiyon kinetiği ile ilgili adsorpsiyon verileri Lagergren, Ho Mc Kay, Weber-Morris ve Elovich denklemlerine uygulanmış olup sonuçlar çizelge 3’ te ve 5,6,7,8,9 no’lu şekillerde verilmiştir.
Şekil 5. Farklı sıcaklıklardaki kinetik grafikler

Şekil 6. Farklı sıcaklıklardaki Lagergren grafikleri

Şekil 5.

Şekil 6.

$y_{298} = -0,0144x + 1,4684$
$R^2 = 0,9483$

$y_{308} = -0,0083x + 1,1104$
$R^2 = 0,8327$

$y_{318} = -0,0704x + 3,315$
$R^2 = 0,8629$
Şekil 7. Farklı sıcaklıklardaki Ho Mc Kay grafikleri

Şekil 8. Farklı sıcaklıklardaki Weber-Morris grafikleri
Şekil 9. Pb (II)-A’nın Farklı sıcaklıklarda Elovich grafikleri

Çizelge:3. Pb(II)’nin aktive edilmiş kil üzerindeki adsorpsiyonu ait, Lagergren, Ho Mc Kay, Weber-Morris ve Elovich modellerine ait parametreler

Kinetik hız denklemleri incelendiğinde, aktive edilen kilin Pseudo Second Order (Ho MacKAY-iğinci dereceden) kinetik modeline daha çok uyduğu genelde \(R^2 \)'nin 0,95 üzerinde olduğu tespit edilmiştir.

2.6 Termodinamik Hesaplamalar

Gibbs serbest enerji değişimini \((\Delta G) \) ile entalpi değişimini \((\Delta H) \) ve entropi değişimini \((\Delta S) \), (1.10) ile (1.11) bağıntıları kullanarak bulunmaktadır.

\[
\Delta G = \Delta H - T \Delta S \quad (1.10)
\]

\[
\ln K_c = -\frac{\Delta H}{R} \cdot \frac{1}{T} + \frac{\Delta S}{R} \quad (1.11)
\]

Bu eşitliklerde \(R \) ideal gaz sabiti (kJ/mol*K), \(T \) mutlak sıcaklık (Kelvin), entropi değişimleri \(\Delta S \) ile entalpi değişimleri \(\Delta H \) ise 1/T ye karşılık gelen \(\ln K_c \) grafiğinden 1.11’e göre bulunmuştur.
Elde edilen verilen çizelge 4'te verilmiştir (Baran ve Düz 2019).

Çizelge 4. Termodinamik Parametreler

<table>
<thead>
<tr>
<th>Sıcaklık (Kelvin)</th>
<th>ΔG(kJ/mol)</th>
<th>ΔH(kJ/mol)</th>
<th>ΔS(kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>-5,75</td>
<td>107,07</td>
<td>0,3786</td>
</tr>
<tr>
<td>308</td>
<td>-9,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>-13,32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SONUÇ VE TARTIŞMA
Yapılan deneySEL çalışmada, Pb(II) iyonlarının asit ile modifiye edilmiş kilin adsorpsiyonu üzerindeki sıcaklık, süre, karıştırma hızı, pH gibi parametrelerin etkisi araştırılmıştır. Pb(II) metal iyonlarının adsorpsiyonu için gereklen optimum şartlar belirlenmeye çalışılmıştır.

Kinetik çalışma verileri hızın Pseudo second order (Ho Mc Kay)'a uyduğu R^2 değerlerinden anlaşılktadır. Termodinamik hesaplamalar sonucuna göre, Kurşun iyonlarının aktive edilmiş kil adsorpsiyonunda $\Delta H_{\text{ortalaması}}$ ve $\Delta S_{\text{ortalaması}}$ değerleri pozitif olup; reaksiyon endotermiktir.

ΔG değerlerinin negatif çıktması sürecin kendiliğinden gerçekleşebileceğini ifade etmektedir. Kurşun iyonlarının sudan uzaklaştırılmasının yüksek sıcaklık değerlerinde daha iyi olduğu anlaşılmıştır. Derişim arttıkça adsorplanan madde miktarının da arttığı tespit edilmiştir.

KAYNAKLAR

Köroğlu, Ç. (2007). İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Ağaclı ve boluca (İstanbul) yöresi seramik killerinin malzeme özelliklerinin araştırılması.

ÖZGÜVEN, F. E. (2011). ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. BİR BENTONİT KIL İÇİNDEKİ SİMEKTİT MINERALININ NİÇEL OLARAK BELİRLENMESİ.

Rowlawp, R. E. (tarih yok). DIFFERENTIAL THERMAL ANALYSIS OF CLAY MINERALS AND OTHER HYDROUS MATERIALS.

TEŞEKKÜR
Bu çalışma Yüzüncü Yıl Üniversitesi BAP 5252 no‘lu proje tarafından desteklenmiştir
A NEW HYBRID FRUIT FLY OPTIMIZATION ALGORITHM FOR SOLVING BENCHMARK PROBLEMS

Mustafa DANACI
ERU, Engineering Faculty, Computer Eng. Dept. Kayseri / TURKEY

Mamadou Alimou DIALLO
ERU, Computer Eng., Grad. School of Natural and Applied Sciences, Kayseri / TURKEY

ABSTRACT
The process of finding the best element (solution) to a given problem is called optimization. Many algorithms such as GA (John Holland, 1975), PSO (Eberhart & Kennedy, 1995), ABC (Karaboğa, 2005) etc. have been developed to fix optimization issues. The Fruit Fly Optimization Algorithm (FOA) is a part of these algorithms, it’s a new category of global optimization evolutionary algorithm with a potential to solve complex optimization issues. The FOA is developed by Wen Tsao Pan in 2011, totally built on the foraging characteristics of Fruit Fly. The algorithm has several varieties of search specially based on vision and olfactory. It has a specific technique to find food quickly, after determine the position, and then fly to the object. FOA is used in many applications, especially in the Wireless Sensor Network Coverage Optimization proposed (Ren, Zhichao and Liu, 2018), travelling salesman problem (Nitin S. Choubey, 2014), Short-term Traffic forecasting (Yuanyuan and Yongdong, 2017), and so on. To avoid falling into a local optimum and to overcome the weakness of the updating strategies which are used to find optimal solution. We have developed a new hybrid Fruit Fly Optimization algorithm (HFOA) which uses Sine Cosine Algorithm (SCA) and it powerful updating and excellent search capabilities. The developed hybrid is tested on a set of 13 Benchmark test functions and its performance is compared with other optimization algorithms. The results obtained showed the successfulness and efficacy of the new hybrid algorithm HFOA, it outperforms the other meta-heuristics algorithms.

Keywords: Optimization, Fruit Fly optimization algorithm, Sine Cosine Optimization Algorithm, Hybrid Fruit Fly Optimization Algorithm.

1. INTRODUCTION
Meta-heuristics is one of the last generation methods suggested to fix difficult issues. All meta-heuristic method is a set of search agents that seek suitable location according to some stated criterions [1]. The purpose of the existing issue is generally about to minimize the wastes, or maximize the benefits, and performances. It is the action to get the best, to improve an operation or a performance. These last years modern developed meta-heuristics optimization algorithms are being improved and are earning lot of attention and popularity [2]. The optimization algorithms can be classify as follows: Physics based, Swarm based, Biology-based, Social based etc.[3], for example, Particle Swarm Optimization (PSO) [4], Ant Colony Optimization (ACO) [5], Harmony Search (HS) [6], Artificial Bee Colony (ABC) [7], Genetic Algorithm (GA) [8] and so on. Fruit-Fly Optimization Algorithm (FOA) is one of these algorithms, it’s a simple and efficient algorithm to solve several continuous optimization problems. In this study, it is developed a hybrid algorithm which gives better solutions in solving some benchmark problems by taking the position updating advantages of the basic SCA.

2. FRUIT-FLY OPTIMIZATION ALGORITHM
It is an approach for determining suitable result generally build on foraging behavior of fruit flies developed by Wen Tsao Pan in 2011. Compared to other algorithm the fruit fly has an evident dominance in terms of vision and olfactory. They usually have an appropriate technique to find food very quickly, after determine the position, and then fly to the object. [9]. FOA consists of the following steps:

1-This step determines the location and numbers of the flies group \((x_0, y_0)\); and also the number iteration used.

\[X_i = x_0 + \text{RandomValue} \] (1)
\[Y_i = y_0 + \text{RandomValue}. \]

3-Since the flies groups don’t know the real place of the optimal solution, the distance between the group and the source (\text{dist}) is basically calculated. The smell concentration is known by the value \(S \).

\[\text{dist}_i = \sqrt{X_i^2 + Y_i^2} \] (2)

\[S_i = \frac{1}{\text{dist}_i} \]

4-By replacing the fitness function \(S \), the smell concentration of the fruit fly is obtained as following:

\[\text{Smell}_i = \text{Function (} S_i \text{)} \] (3)

5-Determines the individual that has the most high smell in the flies group.

\[\text{bestSmell} \text{bestIndex} = \max (\text{Smell}) \] (4)

6-Carry the best amount of concentration \((x_i, y_i)\), of the position, so that fruit flies will fly toward it.

7- Repeat the steps (2)–(5) to insert iterative optimization, in case the taste concentration number at the present time is better than the iterative flavor concentration number at the precedent moment. If yes, then execute step (6).

\[\text{Smellbest} = \text{bestSmell} \]
\[x_i = (\text{bestIndex}) \]
\[y_i = Y(\text{bestIndex}) \] (5)

3. SINE COSINE ALGORITHM (SCA)

It is an easy and efficient optimization procedure, lately proposed by Seyedali Mirjalili (2016). As shown, this algorithm uses a numerical equations axed on sine and cosine functions. In this proposed method, a set of agents is used to find the space of possible solutions. The following equations are used to determine the updated position of an agent \[10\]:

\[
X_{i,j}^{(t+1)} = \begin{cases}
X_{i,j}^{(t)} + r_1 \times \sin(r_2) \times |r_3 \times S_j - X_{i,j}^{(t)}|, & r_4 < 0.5 \\
X_{i,j}^{(t)} + r_1 \times \cos(r_2) \times |r_3 \times S_j - X_{i,j}^{(t)}|, & r_4 \geq 0.5
\end{cases}
\] (6)

Where \(X_{i,j}^{(t)}\) is the \(j\)-th size of the \(i\)-th solution in the population at the \(t\)-th iteration; \(S_j\) is the \(j\)-th dimension of the actual best solution; \(r_1, r_2, r_3, r_4\) are random numbers and \(|\text{||}|\) express the absolute value.

As can be appreciated from the above equation, \(r_1, r_2, r_3, r_4\) are the principal parameters of SCA. The factor \(r_1\) is used to find the direction of the movement generated by the search agent \(i\) which can eventually be in the area between \(X_i\) and the actual best solution or outwards. It’s important to notice that the search between the solutions is the exploitation section, whereas the movement far from them designates the exploration of the search space. For balancing exploitation \((r_1 < 1)\) and exploration \((r_1 > 1)\) the factor is settled as \[11\]:

\[r_1 = a - \frac{t - a}{T} \] (7)

\(T\) indicates the number of iterations and \(a\) is a constant value. The factor \(r_2\) is in the interval \([0, 2\pi]\) and describes how far the agents moves around the optimal solution. The weighting factor \(r_3\) is a random number in \([0, 2]\) which stochastically emphasizes or understates the effect of the best solution in defining the distance. Lastly, the parameter \(r_4\) takes random values in \([0, 1]\) and switches between the sine and cosine components in (6).

4. A NEW HYBRID FRUIT FLY OPTIMIZATION ALGORITHM

Fruit fly optimization algorithm (FOA) in an efficient algorithm for determining an optimal solution to a given problem, it find the best position of an agent at each iteration. All the other agents are therefore gathered at the position that agent which leads the population. In this case if the agent is not the global optimum, the algorithm can surely lose it convergence speed, it precision and end up falling into the local optimum.
Sine Cosine algorithm generates several random initial solutions, revolving around the best solution and using the equations essentially based on sine and cosine functions. To also increase exploitation and exploration in different areas of optimization, many variables are integrated into the algorithm.

In this work the basic FOA is associated with position updating equations in SCA algorithm. These equations guarantee the exploitation and exploration capabilities to make the developed hybrid algorithm more efficient. It updates the position of solution with respect to destination.

The hybrid Algorithm is implemented by using the following equations:

\[X_i = x_0 + \text{RandomValue} + \text{SCA position updating equations (using sinus)} \]
\[Y_i = y_0 + \text{RandomValue} + \text{SCA position updating equations (using cosinus)} \]

Establish the random direction and distance of an agent. To develop the new hybrid Fruit Fly optimization algorithm (HFOA), FOA uses SCA to operate the optimal position. The position of the Fruit Fly is updated in combination of the update method used by Sine cosine algorithm.

5. RESULTS

To determine if the developed HFOA demonstrates high performance, this work uses 13 Benchmark functions shown in Table 1. FOA (Fruit Fly Optimization Algorithm) SCA (Sine Cosine Algorithm), PSO (Particle swarm optimization algorithm), BA (Bat algorithm), WOA (Whale Optimization Algorithm), GA (Genetic Algorithm) and GWO (Grey Wolf Optimizer) are used as competitors in this testing.

<table>
<thead>
<tr>
<th>Function</th>
<th>Names</th>
<th>Unimodal</th>
<th>Multimodal</th>
<th>Range (lb, ub)</th>
<th>Fmin</th>
<th>Separable</th>
<th>Inseparable</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Sphere</td>
<td>✓</td>
<td>x</td>
<td>[-100,100]</td>
<td>0</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>F2</td>
<td>Schwefel 2.22</td>
<td>✓</td>
<td>x</td>
<td>[-10,10]</td>
<td>0</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F3</td>
<td>Quartic</td>
<td>✓</td>
<td>x</td>
<td>[-1.28,1.28]</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F4</td>
<td>Rosenbrock</td>
<td>✓</td>
<td>x</td>
<td>[-30,30]</td>
<td>0</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F5</td>
<td>Ackley</td>
<td>x</td>
<td>✓</td>
<td>[-32,32]</td>
<td>0</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F6</td>
<td>Griewank</td>
<td>x</td>
<td>✓</td>
<td>[-600,600]</td>
<td>0</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F7</td>
<td>Rastrigin</td>
<td>x</td>
<td>✓</td>
<td>[-5,12,5,12]</td>
<td>0</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>F8</td>
<td>Penalized 2</td>
<td>x</td>
<td>✓</td>
<td>[-50,50]</td>
<td>0</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F9</td>
<td>Foxholes</td>
<td>x</td>
<td>✓</td>
<td>[-65,65]</td>
<td>1</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>F10</td>
<td>Kowalik</td>
<td>x</td>
<td>✓</td>
<td>[-5,5]</td>
<td>0.0003</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F11</td>
<td>SHCB</td>
<td>x</td>
<td>✓</td>
<td>[-5,5]</td>
<td>-1.03160</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>F12</td>
<td>Branim</td>
<td>x</td>
<td>✓</td>
<td>[-5,5]</td>
<td>0.3980</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>F13</td>
<td>Goldstein P.</td>
<td>x</td>
<td>✓</td>
<td>[-2,2]</td>
<td>3</td>
<td>✓</td>
<td>x</td>
</tr>
</tbody>
</table>

In this work it is used 13 well-known functions. The size of the presented optimization functions are settle to 30 and the number of iteration 500. The numerical description is shown in Table 1, where lb and ub represent the lower and upper bounds of the solution X, respectively.

In this test, to evaluate the searching performance of the eight algorithms, it is used statistical measures such as average, these algorithms are used to determine the search ability of eight algorithms. It is used eight algorithms to perform 30 separate runs for each optimization function and obtain the statistical results, which are averaged.
Table 2: Statistical results of the algorithms

<table>
<thead>
<tr>
<th>FN</th>
<th>NAMES</th>
<th>FMIN</th>
<th>HFOA</th>
<th>FAO</th>
<th>SCA</th>
<th>PSO</th>
<th>BA</th>
<th>BOA</th>
<th>GWO</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>Sphere</td>
<td>0</td>
<td>2.52E-04</td>
<td>0.0015</td>
<td>7.65</td>
<td>66.312</td>
<td>1.53E+01</td>
<td>1.41E−30</td>
<td>6.59E−28</td>
<td>0.118</td>
</tr>
<tr>
<td>F2</td>
<td>Schwefel 2.22</td>
<td>0.0051</td>
<td>3.30E-01</td>
<td>5.245</td>
<td>1.33E-02</td>
<td>8.463</td>
<td>1.84E+01</td>
<td>1.06E−21</td>
<td>7.18E−17</td>
<td>0.145</td>
</tr>
<tr>
<td>F3</td>
<td>Quartic</td>
<td>0</td>
<td>7.42E-04</td>
<td>43.496</td>
<td>6.57E−02</td>
<td>0.008</td>
<td>1.01E+01</td>
<td>0.001425</td>
<td>0.002213</td>
<td>0.014</td>
</tr>
<tr>
<td>F4</td>
<td>Rosenbrock</td>
<td>0</td>
<td>0.4070</td>
<td>29.174</td>
<td>1.84E+05</td>
<td>935.188</td>
<td>4.07E+03</td>
<td>27.86558</td>
<td>26.81258</td>
<td>0.714</td>
</tr>
<tr>
<td>F5</td>
<td>Ackley</td>
<td>0</td>
<td>3.70E-02</td>
<td>0.114</td>
<td>1.20E+01</td>
<td>3.405</td>
<td>4.94E+00</td>
<td>7.4043</td>
<td>1.06E×13</td>
<td>0.956</td>
</tr>
<tr>
<td>F6</td>
<td>Griewank</td>
<td>0</td>
<td>5.43E-07</td>
<td>2.81E+06</td>
<td>8.30E-01</td>
<td>1.599</td>
<td>5.98E−01</td>
<td>0.000289</td>
<td>0.004485</td>
<td>0.487</td>
</tr>
<tr>
<td>F7</td>
<td>Rastrigin</td>
<td>0</td>
<td>25.978</td>
<td>106.585</td>
<td>3.65E+01</td>
<td>64.511</td>
<td>2.65E+02</td>
<td>0.310521</td>
<td>0.659</td>
<td></td>
</tr>
</tbody>
</table>

The results of the FAO, SCA, PSO, BA, BOA, GA and GWO algorithms used in the comparison of the HFOA in Table 1 are taken from [12], [13], [14], [15] and [16]. As shown in Table 2 for the function SCHB the algorithms SCA, PSO, BA, BOA and GWO gave optimal results, in the same way for the function Goldstein Price, CA, BOA, and GWO also gave efficient results, and for the Rastrigin function only BOA gave an optimal Result.

Moreover, HFOA showed more good performance than the other 7 algorithms in terms of average while solving 6 benchmark functions. Also, HFOA is shown to be an efficient and powerful algorithm for solving optimization problems. Looking at the results of the HFOA algorithm Kowalik function HFOA was able to reach the optimal value of the function while the other algorithms did not. Quartic, Rosenbrock, Griewank, Penalized2 and Foxholes functions gave the best results in comparison to the results obtained by the other algorithms and the algorithm was able to get the closest results to the optimal values of the functions. Sphere and Ackley gave a good result and came as second best as we can see in the Table 2. The results obtained proved that the HFOA can potentially solve real optimization problems in like manner the other algorithms.

6. CONCLUSION
Optimization is a vast and complex field. In recent years, scientists have developed many algorithms to solve this optimization issue, but unfortunately few of them have given reliable solutions. In this study, a hybrid HFOA is developed to solve Benchmark optimization problems. The algorithm takes advantage of the position updating capabilities of sine cosine algorithm and also the exploration and exploitation abilities to obtain optimum solutions. This was done by testing the proposed algorithm with 13 Benchmark functions and comparing them with the basic FOA, SCA, PSO, BA, WOA, GA and GWO algorithms. The results showed that the HFOA produced good performance into some functions and have outperformed the other algorithms in solving Benchmark problems.
REFERENCES

INVESTIGATION OF THE EFFECTS OF TOOL WEAR ON TEMPERATURE AND SURFACE ROUGHNESS VALUE IN THE DIN 1.2343 MATERIAL MACHINING

Abidin ŞAHİNOĞLU
Çankırı Karatekin University,
Department of Mechanical and Metal Technologies, Çankırı, Türkiye

ABSTRACT
Turning of materials above 45 HRC Hardness is defined as hard turning. After the workpiece material is hardened by heat treatment, abrasion resistance increases according to the place of use. But hardening materials are very difficult for machining. Hard turning is also a finish turning process. Therefore, it must have very good surface quality. Good surface quality and low tool wear are desirable during the hard turning. Thus, the reduces frictional losses. In this experimental study, the material of DIN 1.2343 is machined with a hard metal insert. Wear of the tools formed during machining; temperature, sound intensity and surface roughness values were investigated. Accordingly experimental result, the amount of wear increases, the sound intensity increases, the surface roughness value deteriorates and the temperature increases.

Keywords: DIN 1.2343, hard turning, tool wear, surface roughness

Introduction
The increasing world population has enabled more devices to take part in our lives. The use of more devices and machines resulted in more energy consumption. More energy is produced due to increased energy consumption. The majority of the energy produced is derived from fossil fuels. The combustion of fossil deposits causes the release of gases harmful to the environment. These harmful gases create a greenhouse gas effect and increase the temperature in the world. The increased temperature causes the glaciers to melt and increase the water level. With each passing day the habitats are reduced further. Only in the coastal areas of the sea and the ocean does not shrink living spaces. Temperature rise creates desertification. Desertified soils cannot be planted. It becomes unusable. Thus, living spaces are destroyed. Farmland is reduced. The quantity of food produced does not suffice. Instant floods with melting glaciers. Immediately, the need for fresh water becomes unmet. For these reasons, many studies are carried out on energy consumption [1–8].

Increased droughts cause the destruction of forests and the extinction of forests leads to higher drought and temperature increases.

The machines are being run more and more to meet increased production. Rather than running machines, it is a problem that they do not work efficiently. Machine life must be longer. A machine that is used for a short period of time consumes a lot of energy both in production and in use. Efficient use of energy resources is essential for a sustainable world. In this context, measures to increase the life of the machine, which is of great importance, should be taken. More efficient designs, lower material usage, more wear-resistant, friction-resistant machine parts will minimize energy waste in life. Because almost every material we see and use is obtained as a result of the processing of a machine. The production of this machine is a very important issue. This is because an efficient machine will consume less energy during its lifetime. The number of waste products will be reduced. It will reveal durable products. Therefore, manufacturing is of great importance in the industry. Quality and low energy consumption are the priority values to be considered in machine manufacturing which is the starting point of manufacturing. For a quality surface, low surface roughness values should be obtained[9–14].

Materials and Methods
In this experimental study, DIN 1.2343 hardened material was used. As a result of the vacuum hardening process, a hardness value of 50 HRC was obtained. The material is 50 mm in diameter and 250 mm in length. Since the material is long, it is machined between lathe and tailstock. 0.1 mm depth of cut was selected. Cutting speed 150 m / min. The feed rate was determined as 0.15 mm / rev. Since
hard turning is a finish turning process, it is aimed to obtain a good surface quality. For this, the cutting parameters were determined.

It is possible to process materials up to 55 HRC with carbide inserts. Therefore, in this experimental study, carbide insert with WNMG 080408 geometry of Taequtech was used. Experimental study was carried out on TTC 630 model CNC lathe of Taksan company. Machine power 20 KW. The speed is 4000 RPM.

Dino Capture optical microscope was used to monitor tool wear.
At the time of processing, LT pensampermeter was used to measure the current value. A phase value was measured. The voltage values are taken from the regulator. Total power consumption is calculated by multiplying the total time.

The surface roughness value was measured with the Mitutoyo SJ 201 roughness tester. Measurements were taken at 3 different points and the aricmetic mean was calculated. The sampling range was selected as 0.8.

Experiment results
Relationship between tool wear and temperature
Temperature values increase with increasing wear amount. Because as the tool wear increases, the amount of friction increases. The temperature increases with increasing friction. The increase in temperature causes expansion. the expansion causes a greater frictional force. therefore, sudden increases in temperature rise are observed after a while.

During each machining process, 3 passes are removed. 0.1 mm depth of chip is taken constant for each pass. Feed rate 0.15mm/rev. cutting speed 150 m/min. It was obtained. According to the images obtained from the thermal imager, the average temperature values increase to 150 C during the 1st Processing, 160 C during the 2nd Processing and 180 C during the 3rd machining.
Table 1. Relationship between tool wear and temperature

<table>
<thead>
<tr>
<th>Test Time</th>
<th>10 (min)</th>
<th>20(min)</th>
<th>30(min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Wear</td>
<td>![Image a]</td>
<td>![Image b]</td>
<td>![Image c]</td>
</tr>
<tr>
<td>Temperature value</td>
<td>![Image d]</td>
<td>![Image e]</td>
<td>![Image f]</td>
</tr>
<tr>
<td>Machining moment</td>
<td>![Image g]</td>
<td>![Image h]</td>
<td>![Image j]</td>
</tr>
</tbody>
</table>

Figure 1. Relationship between tool wear and temperature

Tool wear causes temperature rise. At the same time, tool wear accelerates as temperature increases. Excessive temperature increase will damage the chemical structure of the material. Changing chemical and mechanical properties affects the performance of the machine part. Especially in heat treated workpieces, the increase in temperature decreases the hardness value. Reduces resistance to wear and friction. Increased temperature and friction cause an increase in energy loss.

The relationship between tool wear and current value

As tool wear increases, friction and temperature increase, so the current value increases. The machine tool is forced more. Chip removal becomes difficult. Power consumption increases. Depending on the power consumption, the amount of energy consumed on the machine tool increases. Microscope is used to investigate tool wear. Current value can be measured instantaneously. Therefore, it is of paramount importance to check the instantaneous current value in tool condition monitoring.

It is known that cutting forces increase as long as tool wear increases. Thus, a strong relationship can be established between the increase in shear forces and the current value.
Surface Roughness Value

Surface finish is especially important for finish turning operations. Because the regular work of the machine parts is ensured with good surface quality. The surface quality must be high to produce a low friction force. The surface roughness value increases with increasing tool wear. The increased amount of wear causes the tip radius to grow after a while. Increasing tip radius has a positive effect on surface quality. However, the increasing amount of wear and vibrations cause deterioration of surface quality.

In this experimental study, it was seen that carbide inserts can be removed for a long time in DIN 1.2343 material which is a hard material. The surface roughness values of less than 1.3 micrometer value indicates that the surface is close to the quality of grinding.

Results

As a result of these experimental studies; it was observed that the temperature increased as the tool wear increased. It has been observed that the friction force increases with increasing wear amount and therefore the temperature values increase rapidly.

It has been seen that energy consumption on the machine tool increases due to tool wear. Current values increase. The current value measured in single phase increased from 2.60 A to 3.80 A. Surface roughness values are also increased due to tool wear. The surface roughness values are less than 1 micron despite the 30 minutes metal removal time. It has been found that carbide inserts can be used up to a certain hardness value as it provides good surface quality.
References
PERFORMANCE EVALUATION OF RPL OBJECTIVE FUNCTIONS WITH CoAP IN LOW POWER AND LOSSY NETWORKS

Alper K. DEMIR
Assist Prof. Dr. Dept. of Computer Engineering
Adana Alparslan Turkes Science and Technology University

Sedat BILGILI
Res. Asst. Dept. of Computer Engineering
Adana Alparslan Turkes Science and Technology University

ABSTRACT
Low Power and Lossy Networks defines a network structure which consists of constrained devices. Low Power and Lossy Networks (LLNs) are highly challenging networks as they are extremely resource constrained in terms of processing power, memory and energy, such as battery. LLNs are intrinsically deployed in harsh environments and commonly show unstable low bandwidth, high packet loss and link failures. It is expected that LLNs will bring new innovative applications into our lives. On the other hand, it is not possible to use standardized internet protocols because LLN devices are weak in terms of memory and processing power. As a result, IETF formed 6LoWPAN WG and ROLL WG to bridge LLNs with the Internet. ROLL WG standardized RPL for the routing needs of LLNs. RPL leverages different Objective Functions (OFs) to construct RPL topology. Further, IETF standardized CoAP application layer protocol for the data exchange needs of LLN nodes. Also, because there are restricted devices in LLN networks, heavy protocols such as TCP cannot be used. Mechanisms such as congestion control implemented by TCP are operated with applications such as CoAP in the application layer in networks consisting of restricted devices. How RPL OFs will perform when CoAP is used at application layer is not broadly investigated area. Like so, in this work, we evaluated different OFs of RPL where LLN nodes run CoAP for data exchange. MRHOF and OF0, the two most commonly used Objective Functions in RPL, were considered in the evaluations in this study. Our results indicate that Minimum Rank with Hysteresis Objective Function (MRHOF) demonstrate better results than Objective Function Zero (OF0).

Index Terms: RPL, CoAP, Low Power and Lossy Networks, OF0, MRHOF

I. Introduction
Low Power and Lossy Networks (LLNs) are composed of a large number of low power wireless nodes along with one or more gateway nodes [1]. The low power nodes are wirelessly interconnected with each other and identified by constrained resources such as energy, processing, memory and bandwidth. The gateway nodes connect the LLN into another network such as the Internet. Such an example LLN network is presented at Figure 1. As wireless nodes possess limited power and run in lossy harsh environments, LLNs usually exhibit unstable low data rate, packet losses and momentary link failures. LLNs pioneer many applications, including healthcare, energy metering on the smart grid, smart webs, smart houses, smart cities and intelligent transportation [2], [3]. As the cost of LLNs becomes cheaper, faster, better and more intelligent, people will rely on these applications to make superior choices. These applications will have a significant impact on many aspects of our lives such as how we live, work, travel, health care and learn.

The absence of IP-based network architecture prevented LLNs from interoperating with the Internet. Thus, Internet Engineering Task Force (IETF) chartered the 6LoWPAN (The IPv6 in Low Power Wireless Personal Area Networks) and ROLL (The Routing over Low-Power and Lossy Links) Working Groups (WGs) to standardize at distinct layers of the Internet protocol stack with the target of connecting LLNs to the Internet. 6LoWPAN is a milestone protocol that link the LLNs with IP world. It provides a new dimension for an intact interoperability with the Internet.

There have been several work for defining an adequate routing protocol for 6LoWPAN-compliant LLNs such as Dymolow [4], Hydro [5] and Hilow [6]. However, none of these proposals gained considerable attention in the area where growing demand was required for a standard solution [7]. To
fill this gap, IETF ROLL WG has proposed a routing protocol, named as RPL. The ROLL WG of IETF specifically designed IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) compliant with the 6LoWPAN protocol for LLNs [3], [8], [9]. To construct the RPL topology, RPL uses the Objective Functions (OFs) that leverage routing metrics to calculate the best path of nodes.

Fig. 1: Low Power and Lossy Network

The entire topology construction is exceptionally dependent on the used OF by the LLN. The network performance is directly affected by the means of route selection. The best route is selected according to metrics and constraints of OFs. Thus, the notion of OF presents a great flexibility for enabling QoS-aware routing that supports various application requirements. Hence, each application can choose a different OF. OF defines how RPL leverage metrics into rank used to select and optimize routes. The IETF is standardized two different OF, namely Objective Function Zero (OF0) [10] and Minimum Rank with Hysteresis Objective function (MRHOF) [11]. The design of competent OFs is still an open research area [12].

The Constraint Application Protocol (CoAP) was designed by IETF for application layer communication considering energy, computation, memory and limited communication capacity of LLN nodes [13]. The CoAP is a specialized web transfer protocol for constrained physical LLN nodes. CoAP has a protocol primitive that is similar to client-server model of HTTP (Hyper Text Transfer Protocol). It is expected that billions tiny LLN nodes will be running CoAP protocol in the near future [14]. Thus, in this work, we investigated how RPL OFs, namely OF0 and MRHOF, achieve when CoAP is operated as application layer protocol. Obtained results presents that CoAP clients perform better when RPL MRHOF is preferred as an RPL OF.

II. Related Work

We categorized the related work into Performance Evaluation of CoAP, Performance Evaluation of RPL, Performance Evaluation of RPL OFs and CoAP-based Performance Evaluation of RPL OFs. We provide the related work details in this section.

A. Performance Evaluation of CoAP
A low-power CoAP implementation is evaluated in a testbed experiments for two duty cycling mechanisms [15]. The performance of CoAP is also compared to HTTP [16]–[18] and MQTT [19].

B. Performance Evaluation of RPL
The performance of the RPL is carried on a testbed environment in terms of power consumption, packet loss and packet delay [8]. RPL performance is evaluated in network scalability, multiple sink and mobility models configurations [20]. Evaluation and analyzing the performance of the RPL are proceeded in other work [21]–[24].

C. Performance Evaluation of RPL OFs
Performance of RPL OFs, namely OF0 and MHROF, are evaluated on Cooja simulator [25]–[27]. MRHOF and OF-EC objective functions along with different trickle timers are used for performance evaluation of RPL [28]. Evaluating and analyzing the performance of RPL OFs are investigated in other work [29]–[33].
D. CoAP-based Performance Evaluation of RPL OFs

The performance evaluation of CoAP using RPL OF0 and MRHOF along with LPL is conducted in a testbed environment where nodes run TinyOS [34]. It is observed that MRHOF of RPL performs better than OF0. In this study, we also examined performance of RPL OF0 and MRHOF when CoAP is used at application where nodes run ContikiOS.

III. Simulation Environment

As physical testbeds are expensive and not easy to access, evaluations of objective MRHOF and OF0 have been conducted in simulation environment. For these simulations, Cooja Network Tool [35] has been chosen. This simulation tool supports multiple nodes and operating systems. Within the selected operating system that is ContikiOS, it is possible to select an OF for RPL routing.

For simulations, different network sizes have been considered. For this purpose, simulations have been run for networks with 5, 10 and 15 CoAP clients. Network topology is given in Figure 2. Also, to get more analytic results, all simulations have been repeated for link layer PDR values 100 and 90. Each of the created simulation scenarios has been run 5 times. All scenarios with variable values are given in Table I. During experiments, each client sends 100 CoAP requests, and Success Rate, Average Packet Time, Maximum Delay Between Packets and Total Time performance metrics are calculated based on CoAP responses.

A. Performance Metrics

1) Success Rate: Success Rate indicates percentage of successfully received CoAP responses. In other words, this metric represents application layer PDR.

2) Average Packet Time: Average Packet Time means average of total elapsed time of successfully received CoAP response. Elapsed time begins when CoAP request is sent and ends when CoAP response is received. One thing to consider about this performance metric is only successful CoAP request-response couples are calculated. Failed requests are ignored for this performance metric.

3) Maximum Delay Between Packets: This metric illustrates the maximum time elapsed between two successfully received CoAP responses. This metric can be utilized by real-time applications.

4) Total Time: Total Time is the total elapsed time to receive 100 CoAP responses.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Objective Function</th>
<th>Node Count</th>
<th>PDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MRHOF</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>MRHOF</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>MRHOF</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>MRHOF</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>MRHOF</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>MRHOF</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>OF0</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>OF0</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>OF0</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>OF0</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>OF0</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>OF0</td>
<td>15</td>
<td>90</td>
</tr>
</tbody>
</table>

TABLE I: Simulation Scenarios
IV. Performance Evaluation

To figure out the performance difference of two different objective functions, multiple simulations have been ran. As an outcome of these simulations, results graphs have been produced with different performance metrics. Figure 3 shows all results graphs. These graphs were analyzed according to their performance metrics.

A. Success Rate

Figure 3a shows the Success Rate values for different objective functions, different PDR values and different node counts. As can be seen in this graph, for small networks which consist of only 5 nodes, there’s no significant difference between objective functions. However, the increase in the number of nodes makes the difference between objective functions more visible. According to the data in the graph, in cases where the number of nodes is 10, MRHOF objective function shows a better success rate than OF0 objective function. According to these results, the reduction of PDR value from 100 to 90 did not affect MRHOF objective function much, but this did not occur in OF0 objective function. As the network environment becomes more crowded (increasing the number of nodes to 15), these differences become more pronounced. It is clear that the MRHOF objective function is better than the OF0 objective function if an assessment should be made according to the success rate metric. Again, it can be said that MRHOF objective function can better tolerate the changes in PDR value.

B. Average Packet Time

Average packet time values for objective functions MRHOF and OF0 are given in Figure 3b. Performance difference between these objective functions is not easy to distinguish for smaller networks with only 5 nodes. Even in small networks, effect of decrease in PDR value is visible in graph. Lower PDR value lead up to increased packet delivery time. For more crowded networks which contains 10 or 15 nodes, performance difference of objective function MRHOF and objective function OF0 becomes clearer in terms of average packet time. For networks with 10 or 15 nodes, average packet time is lower when objective function OF0 is chosen. However, there’s a point to keep in mind while evaluating these results. As previously mentioned, observations show that objective function MRHOF is superior to objective function OF0 in terms of success rate. However, in terms of average packet time, objective function OF0 looks better than objective function MRHOF. This is due to calculation way of average packet time. While calculating average packet time, only successful packets are considered while failed packets are ignored. This situation should be keep in mind while analysing average packet time values. This case is also observable with result graph with lower PDR value in network with 15 nodes.

C. Maximum Delay Between Packets

Comparison of objective function MRHOF and objective function OF0 in terms of maximum delay between packets is given in Figure 3c. This graph shows the value of maximum wait time between two sequential, successful packets. This results shows the difference between two objective function even in small networks with 5 nodes. As the network grows larger, this difference increases. For all network sizes, objective function MRHOF gives lower values than objective function OF0 in terms of maximum delay between packets. Another thing to point out is, objective function MRHOF is more resistant to changes in PDR value for maximum delay between packets values.

D. Total Time

The total time taken to transmit (successful or failed) 100 packets is given in Figure 3d. This value also can be used while calculating average throughput. Crowded networks, packet delivery failures or re-transmissions can increase this value. While evaluating this metric, graphs shows significant difference between objective functions and PDR values. As a matter of course, higher total time values are expected for lower PDR values. Once again, difference between objective function MRHOF and OF0 is not very significant for smaller networks. But in general, objective function MRHOF keeps its superiority against objective function OF0. In numerical terms, total time values of objective function OF0 increased by approximately 55% compared to objective function MRHOF for a network with 15 nodes and PDR value is set to 100.

V. Conclusion

Performance Evaluation of CoAP over various RPL Objective Functions is not a widely explored area. In this work, we analyzed the performance of RPL OF0 and MRHOF. We used CoAP clients and
different PDRs at physical layer. The reason is that CoAP is currently a de facto standard in LLNs, and as CoAP has default congestion control mechanism, physical layer PDR does influence the performance. As far as we know, there is no previous research on performance evaluation of RPL OFs when ContikiOS, CoAP and various PDR values are used for analysis. We also get the same overall results presented in [34] where RPL MHROF is more suitable than RPL OF0 when CoAP operates at application layer.

Fig. 3: Results Graphs with Different Objective Functions for Different Performance Metrics

ACKNOWLEDGMENT
This work was supported by SIREN project funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No 116E025.

REFERENCES

A NOVEL HYBRID BAT CROW SEARCH ALGORITHM FOR SOLVING OPTIMIZATION PROBLEMS

Mustafa DANACI
ERU, Engineering Faculty, Computer Eng. Dept.
Zaher AKHDIR
ERU, Computer Eng., Grad. School of Natural and Applied Sciences

ABSTRACT
Meta heuristic algorithms like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and other algorithms are great and famous techniques used to solve many hard and complex optimization problems. This paper presents a new hybrid algorithm named Hybrid Bat Crow Search Algorithm (HBCSA). To achieve this algorithm, two algorithms were considered. The algorithms are Crow Search Algorithm (CSA) and Bat Algorithm (BA). The advantageous points of the two algorithms were taken into consideration and used to design an effective hybrid algorithm that can give significantly high performance in many benchmark functions. In addition, quantum behaved PSO equation is used in this hybrid algorithm. This leaded to better results when testing the algorithm against Benchmark problems. The combination of concept and functionality of Bat and Crow algorithms enable the suggested hybrid algorithm of making an appropriate trade-off between exploration and exploitation capabilities of the new algorithm.

For the purpose of evaluating the performance of the new Hybrid Bat Crow Search Algorithm (HBCSA), some well known Benchmark functions were utilized. In the new algorithm every member in the swarm will have behave like a crow in the sense of observing other members in the swarm to see where they hide their foods. In the same time, as in bats, every member will use echo system while searching its own solution. Echo system is integrated with PSO equations. Each member has an awareness parameter as in CSA. According to awareness parameter a member can know whether if another member is following it or no. These are the basic lines of the new HBCSA. The results indicated that the proposed HBCSA can produce very competitive solution when compared to other famous and state of the art meta-heuristic algorithms.

Key Words: Meta-Heuristic, Crow Search Algorithm, Bat Algorithm, Benchmark Functions.

1. INTRODUCTION
Nowadays researchers deal with hard and complex problems. Solving complex problems using traditional techniques is sometimes impossible because of the complexity of the problems. That’s why many researchers aimed to develop novel solution approaches named meta heuristics for solving complex and hard optimization problems in reasonable cost and time. Meta heuristics, due to their advantages, become very popular and applied to solve complex real-world problems [1, 2]. The basic idea for most of the meta heuristic algorithms is inspiration from the behaviour of living animals in nature, nature or physical phenomena [3, 4] divides meta heuristics in three main categories: Evolutionary based, Physics based and Swarm based techniques.

In general, with using the powerful sides of different existing algorithms, a new better algorithm can be developed which can use advantages of the other algorithms to perform better. Hybrid algorithm in general is efficient from the original versions of the algorithms which was taken from. This is due to the fact that the hybrid algorithm benefits from all the advantages of the original algorithms [3-5].

In this research, a novel hybrid algorithm is proposed based on two proposed meta heuristic algorithms of Bat Algorithm and Crow Search Algorithm. The new hybrid algorithm is named Hybrid Bat Crow Search Algorithm (HBCSA). The proposed hybrid algorithm benefits from advantages of both algorithms and aims to fill their drawbacks. The modifications considered in this research result in a very efficient algorithm which performs significantly better than the basic version of the two algorithms. To evaluate the effectiveness of the new algorithm, well-known benchmark functions are utilized, and the results are compared to other state-of-the-art algorithms.
2. RELATED WORKS

2.1. BAT ALGORITHM (BA)

Bats have great features and they are amazing. They are mammals and they have wings. Bats also have great echolocation ability. The pulses that bats emit differ in properties and these pulses are related to their hunting tactics and depending on the specie of the bat. Their signal bandwidth differs according to the species, and in general, it increases by using more harmonics [6].

In simulations, virtual bats are used. Rules have to be defined on the position \(x(i) \) and velocity \(v(i) \) in a \(d \) dimensional searching space and they are updated according to them. The new solutions \(x_i^t \) and velocities \(v_i^t \) at time step \(t \) are given by [6, 7]:

\[
\begin{align*}
f_i &= f_{\text{min}} + (f_{\text{max}} - f_{\text{min}})\beta \\
v_i^t &= v_i^{t-1} + (x_i^t - x^*)f_i \\
x_i^{t+1} &= x_i^t + v_i^t
\end{align*}
\]

where \(\beta \in [0,1] \) is a random valued vector computed using uniform distribution. Here \(x^* \) is the present global best solution (location) which is computed after looking at all the solutions of all the bats in the swarm. \(f_i \) is the velocity increment.

The loudness value \(A(i) \) and the plus emission rate \(r(i) \) have to be updated while the algorithm iteration proceeds as follow [6, 7]:

\[
A_i^{t+1} = a A_i^t, \quad r_i^{t+1} = r_i^0 \left[1 - \exp(-\gamma t) \right] \tag{4}
\]

Taking into consideration that:

\[
A_i^t \to 0, \quad r_i^t \to r_i^0, \text{ as } t \to \infty
\]

2.2. CROW SEARCH ALGORITHM (CSA)

Crows are known for their cleverness and can communicate in a sophisticated manner, remember faces and use tools. That is why they have been recognized as one of the most intelligent animals found on the planet. The main concept behind the algorithm is that crows store their surplus food secretly at secret location and retrieve it whenever needed. They can recall their food hiding places even after several months. Crows observe food hiding places of other birds and steal their food. To find the food hiding locations of crows is a hard task to do as they can make fool the watching and following crows by going to other location in case, they know that someone is following [9].

In the crow search algorithm, each crow will update its own position according to awareness of the other crow that it may follow. For example, let’s assume two crows i and j. Crow i will follow crow j to find the hiding food by crow j and steal the food. For this, crow i will update its position according to the following formula [8, 9].

\[
X_i^{t+1} = \begin{cases}
X_i^t + r_i \times f_i^t \times |P_i^t - X_i^t|, & r_i \geq AP_i^t \\
\text{a random position otherwise}
\end{cases}
\]

where \(AP_i^t \) is the awareness of crow j and \(f_i^t \) is the flight length of crow i. In other words, if crow j feels that crow i is following him, crow i updates to a random place in solution space. It is worth noting that for a crow i, a crow j is picked in random way and is used to update its position [8, 9].
2.3. PROPOSED HYBRID MODEL

In the new algorithm, every member in the swarm will have behave like a crow in the sense of observing other members in the swarm to see where they hide their foods. In the mean while as in bats, every member will use echo system while searching its own solution. Echo system is integrated with particle swarm optimization equations. Each member has an awareness parameter as in CSA. According to awareness parameter a member can know whether if another member is following it or no. Member j may not know that member i is following it. due to that, crow i approaches to the hiding place of crow j. Member j may know that member i is following it. due to that, and for the purpose of protecting the food it hid from being stolen, member j will trick member i by changing its course and moving to another position of the search space. A member will use echo system alongside with quantum behaved particle swarm optimization equations to locate best food (solution) place [11]. In the same time, it will keep an eye on foods place (solutions) found by the others it follows. According to them its new location in the search space is defined. In addition, local search is applied so every member will try to improve its own solution by looking to nearby solutions. This help in exploration phase of the algorithm.

Below is the pseudo code of the proposed algorithm:

```
Initialize positions of the flock in the swarm (N) in the search space in random way
For each member Evaluation is made of its position
Set the initial values of memories for the members in the swarm
Calculate the objective function for each member.
while current iteration < total iterations number
   for i = 1 → N (all N member of the swarm)
      Choose one of the members to follow (j for example) randomly.
      Define an awareness probability
      If (random value >= AP)
         Generate new solutions by using quantum behaved particle swarm optimization equations.
         And approach the member j position.
      else
         generate a new position randomly
      end
      With a randomly generated probability generate a local solution near the best solution.
   end for
   foreach member in the swarm
      Check whether the solution found by the member j is better and update solution
   end foreach
   if (rand < A(i) & f(xi ) < f(x∗))
      The new generated solution is taken
      Increase ri and reduce Ai
   End
   If solution doesn’t does not improve after defined number of steps
   Initialize the loudness values of Ai and reset pulse rates ri
end while
Process and visualize the acquired results
```

3. RESULTS AND DISCUSSION

Meta heuristics are stochastic algorithms thus, several Benchmark functions are needed to be solved to ensure the efficiency of the algorithms. In this research, many benchmark functions were used to evaluate the performance of the proposed HBCSA against well-known meta heuristic algorithm in exploration and exploitation abilities. For validating the efficiency of the proposed hybrid algorithm, the performance of HBCSA is compared to CSA and BA, as well as other well know algorithms. Average values are used to compare results.

For comparison made in Table 1, all the algorithms were compared using the same set of parameters. Number of runs of each algorithm was set to 2000 iterations, decision number variables (dimension) is set to 10 and population size is set to 20.
For comparison made in Table 2, number of runs of each algorithm was set to 2000 iterations, decision number variables (dimension) is set to 10 and with population size is set to 50. Table 1 and Table 2 are showing the results of comparing the proposed HBCSA with CSA, BA and an Improved Bat Algorithm (IBA) respectively [6-10].

Table 1: Comparing HBCSA with Crow Search Algorithm.

<table>
<thead>
<tr>
<th>Benchmark Functions</th>
<th>FMIN</th>
<th>HBCSA</th>
<th>CSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1: Sphere</td>
<td>0</td>
<td>1.10E-117</td>
<td>4.09E-11</td>
</tr>
<tr>
<td>F2: Rosenbrock</td>
<td>0</td>
<td>3.2731</td>
<td>10.86</td>
</tr>
<tr>
<td>F3: Griewank</td>
<td>0</td>
<td>0.11141</td>
<td>0.21</td>
</tr>
<tr>
<td>F4: Schwefel</td>
<td>0</td>
<td>1.49E-74</td>
<td>6.27E-03</td>
</tr>
<tr>
<td>F5: Ackley</td>
<td>0</td>
<td>4.56E-15</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 2: Comparing HBCSA with BA and IBA.

<table>
<thead>
<tr>
<th>Benchmark Functions</th>
<th>FMIN</th>
<th>HBCSA</th>
<th>BA</th>
<th>IBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1: Sphere</td>
<td>0</td>
<td>1.41E-284</td>
<td>7.90E-01</td>
<td>8.11E-06</td>
</tr>
<tr>
<td>F2: Zakharov</td>
<td>0</td>
<td>1.20E-298</td>
<td>3.38E+01</td>
<td>4.63E-03</td>
</tr>
<tr>
<td>F3: Sum of Different Power</td>
<td>0</td>
<td>0</td>
<td>2.72E-03</td>
<td>5.38E-06</td>
</tr>
<tr>
<td>F4: Dixon-Price</td>
<td>0</td>
<td>0.66667</td>
<td>7.90E+01</td>
<td>0.66667</td>
</tr>
<tr>
<td>F5: Step</td>
<td>0</td>
<td>5.20E-19</td>
<td>7.90E+01</td>
<td>6.67E-01</td>
</tr>
<tr>
<td>F6: Michalewicz</td>
<td>-9.66015</td>
<td>-8.2989</td>
<td>-5.16</td>
<td>-7.91</td>
</tr>
<tr>
<td>F7: Griewank</td>
<td>0</td>
<td>0.12181</td>
<td>1.14E+01</td>
<td>1.34</td>
</tr>
<tr>
<td>F8: Easom (d=2)</td>
<td>-1</td>
<td>-1</td>
<td>-3.25E-02</td>
<td>-9.99E-01</td>
</tr>
<tr>
<td>F9: Perm (d=4)</td>
<td>0</td>
<td>9.66E-02</td>
<td>3.54E-01</td>
<td>7.16E-02</td>
</tr>
<tr>
<td>F10: Six Hump Camel Back (d=2)</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.03093</td>
<td>-1.0316</td>
</tr>
</tbody>
</table>

From the results, it is clear that the proposed hybrid algorithm performs significantly better than two meta-heuristic algorithms of BA and CSA. This is due to high exploration and exploitation ability of the proposed algorithm and this is normal due to the fact that the hybrid algorithm is made of these two algorithms and uses the best features of them.

The only exception was in Table 2 where the improved version of Bat Algorithm IBA was able to get a slightly better result in F9 Perm function. But HBCSA was again able to over perform at the other test benchmark functions.

A comparison is performed among HBCSA and other metaheuristic algorithms, and statistical analysis on simulation results is given in Table 3 [17]. These algorithms are Cuckoo Search Algorithm [12], Deferential Evolution Algorithm [13], Firefly Algorithm [14], Genetic Algorithm [15], Particle Swarm Optimization Algorithm [16]. The Benchmark functions are selected in such a way that they can assess the algorithm’s ability to converge fast, jump out of local optima, ability to achieve a large number of local optima and avoid premature convergence. The average values obtained by the new hybrid algorithm and other algorithms on various test bed benchmark functions are listed in Table 3. The simulation results indicate that HBCSA generally gives very good performance compared with other algorithms.

For comparison made in Table 3, each algorithm was set to 10000 iterations, decision number variables was set to 30 (or based on the type of Benchmark function if 30 is not applicable) and population size was set to 50.
When the results of HBCSA are examined, it is noticed that HBCSA is reaching the optimal values in 8 functions of F2, F5, F7, F12, F14, F15, F19 and F20 and was better than most of the other algorithms in most of these functions. This indicates the efficiency of HBCSA. HBCSA was able to reach near optimal results in 7 functions of F1, F4, F6, F8, F13, F17 and F21 and its results was better than most of the other algorithms’ results of the other algorithms used in comparison. In the others 7 functions of F3, F9, F10, F11, F16, F18 and F22 HBCSA couldn’t get the best values comparing to other algorithms and the other algorithms reached better results than HBCSA. In general, the results prove the efficiency of HBCSA and that HBCSA performs significantly better than other meta-heuristic algorithms used in the comparison.

4. CONCLUSION

This paper presented a novel hybrid optimization algorithm named Hybrid Bat Crow Search Algorithm (HBCSA). It is population-based on the behaviour of crows and bats. In HBCSA, the control parameters are used to control the performance of the algorithm. Simulation results show that the performance of the proposed new algorithm is promising since it has produced competitive results in comparison with the other studied algorithms. On a set of benchmark functions, it is observed that although the other algorithms are known as fast techniques, they were outperformed by HBCSA at some benchmark functions. Due to the fact That the advantages of the two algorithms (BA and Crow Search Algorithm) are considered and utilize to design an efficient hybrid algorithm, this led to significantly better perform in various benchmark functions. In addition, quantum behaved PSO equation is used in this hybrid algorithm. This enhanced the results even more when testing the algorithm against Benchmark problems.

REFERENCES

CU(II) İYONLARININ AKTİVE EDİLİŞ KARIŞİK TİPTEKİ KİL İLE SUDAN UZAKLAŞTIRILMASI, İZOTERM, KİNETİK VE TERMODİNAMİK PARAMETRELERİN İNCELENMESİ
ISO THERM, KINETIC AND THERMODYNAMIC ANALYSIS OF SOME HEAVY METAL ION’S ADSORPTION ON NATURAL AND MODIFIED CLAY MINERALS (SIİRT/KURTALAN)

Nilgün ONURSAL
Siirt Üniversitesi Eğitim Fakültesi, Siirt
Ali Rıza KUL
Yüzüncü Yıl Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu, Van
Mehmet Fırat BARAN
Mardin Artuklu Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu, Tibbi Hizmetler Bölümü, Mardin

ÖZET

Kinetik veriler Lagergren, Ho-McKay, Weber-Morris ve Elovich modellerine uygulandığında verilerin daha çok, Ho McKay ikinci derece hiz denklemine uydugunu değerlendirilmiştir.

Ayrıca serbest enerji, entalpi ve entropi gibi termodinamik veriler hesaplanmıştır ve Cu (II) için ΔH= 107,07 k j/mol, ΔS=0, 378 k j/mol ve ΔG298= - 5,75 kj/mol, ΔG308= -9,54 kj/mol, ΔG318= - 13,32 kj/mol olduğu bulunmuştur.

Anahtar kelimeler: Bakır, Adsorpsiyon, Kinetik parametreler, Termodinamik, Ham kil ve Aktive edilmiş kil.

ABSTRACT
In this study, modified mixed type clay are being used for removal of Cu(II) from aqueous solution. The parameters affecting the adsorption, such as temperature, concentration, pH, contact time were examined. The data were applied to the Freundlich, Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherms and Langmuir adsorption isotherm model was evaluated as the best fit in accordance with the data. Adsorption capacities of 298, 303 ve 313 K were found to be 30.30, 26.18 and 37.17 mg Cu/g activated clay, respectively.

When the kinetic data were applied to the Lagergren, Ho-McKay, weber- Morris and Elovich models, it was seen that the data mostly complies with the Ho-McKay pseudo second order equation.

Also, thermodynamic data such as free energy, enthalpy and entropy were calculated and as a results show that ΔHo= 107,07 k j/mol, ΔSo=0, 378 k j/mol ve ΔG298= - 5,75 kj/mol, ΔG308= -9,54 kj/mol, ΔG318= - 13,32 kj/mol, for adsorption of Cu(II) on activated clay.

Keywords: Adsorption, Clay, Copper, Lead, Heavy metal, Thermodynamics, Raw clay and Activated clay.

1.GİRİŞ
Ağır metallerin sayısı 60’dan fazla olup bunlardan bakır, kurşun, demir, kobalt, kadmium, krom, kalay, nikel, çinko, alüminyum, vanadyum, molibden, mangan en çok bilinenlerdir. Bu elementler doğada genel olarak kararlı bileşikleri olan sülfür, silikat, oksit ve carbonat bileşikleri halinededirler (Çay, 2014).

Mineral özelliklerine göre oluşan gruplar;
- Klorit
- Kaolin
- Montmorillonit (smektit)
- Mika
- İllit
- Attapulgit (Malayoğlu, 1995)

Farklı fazdaki maddeler arasındaki çekim kuvvetlerinin etkisi ile gerçekleşebilen üç tür adsorpsiyon vardır. Fiziksel adsorpsiyon (Fizisorpsiyon), kimyasal adsorpsiyon (Kemosorpsiyon), iyonik adsorpsiyon’ dur.

2. MATERIJAL VE METOD

2.1 Matriyal

Siirt ili Kurtalan ilçesi Ağaçlıpınar köyünden temin edilen orijinal kil 110°C de 24 saat süreyle etüvde kurutulup, desikatörde soğutuldu. Daha sonra hazır hale getirilen kil öğütüldü. Numunenin eleme işlemi, kontrollü elek sarsma cihazı ile (100+120), (120+140), (140+170), (170+200) ve (200 mesh’lik eleklerde gerçekleştirildi. Elenen kil numuneleri uygun kaplara alındı. Elde edilen aktive edilmiş kil 110°C de 24 saat süreyle etüvde kurutulup, desikatöre konuldu. XRF ile yapılan kilin kimyasal analiz sonuçu aşağıda Tablo 1.de verilmiştir.

<table>
<thead>
<tr>
<th>Numune Adı</th>
<th>Kimyasal Bileşimi %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham Kil</td>
<td>SiO₂ 56,0 Al₂O₃ 11,3 CaO 9,8 Fe₂O₃ 5,8 MgO 2,1 K₂O 1,2 Na₂O 3,1 P₂O₅ 0,1 MnO 0,1 TiO₂ 0,8 KK 9,50</td>
</tr>
<tr>
<td>Aktive Kil</td>
<td>SiO₂ 51,7 Al₂O₃ 14,6 CaO 3,8 Fe₂O₃ 8,6 MgO 6,0 K₂O 3,2 Na₂O 0,9 P₂O₅ 0,1 MnO 0,1 TiO₂ 0,7 KK 10,0</td>
</tr>
</tbody>
</table>

Tablo 1. Aktive Edilmiş Kilin Kimyasal Bileşimi

KK: 1000°C deki kütle kaybı.

2.2 Metod

Adsorpsiyon deneyleri 3 grupta yapıldı. Bunlar kinetik, izoterm ve sıcaklık deneyleridir. Deneylerde ağır metal çözeltileri 25 ml alınarak, daha önceden tartımlı yapılan erlenmeyer de ki 0,2000’er g lik
killerin üzerine bırakıldı. Iştahı çalkalayıcıda (Shaker) uygun zaman dilimlerinde çalkalanıp, katı ve sıvı fazlara ayrılmaları için 15’er dakika santrifüjlendi. Geriye kalan kil ve çözelti uzaklaştırılarak AAS cihazında analiz edildi. Adsorplanan miktarlar 2.1 denklemleri kullanılarak hesaplandı.

\[q_t = \frac{(C_i - C_t)V}{m} \quad q_e = \frac{(C_i - C_e)V}{m} \] (2.1)

2.3 Adsorpsiyon İzotermleri ve Denklemleri

- Freundlich modeli
- Langmuir denklemi
- Temkin:
- Dubinin-Radushkevich

Freundlich modeline göre, bir adsorbentin yüzeyinde bulunan adsorpsiyon alanları heterojendir yani farklı türden adsorpsiyon alanlarından oluşur. Lineerize edilmiş Freundlich ifadesi denklem (2.2) de verilmiştir.

\[\ln q_e = \ln K_F + \frac{1}{n} \ln C_e \] (2.2)

Burada; \(K_F \) adsorpsiyon kapasitesini (L/mg); \(n \): adsorpsiyon yoğunluğunu(birimsiz) ifade eder (Baran ve ark. 2018).

\[q_e = \frac{C_e}{q_m} + \frac{1}{b q_{\text{max}}} \] (2.3)

\[q_e = \frac{(C_i - C_e)x V}{m} \] (2.4)

Burada; \(q_m \): dengedeki g adsorplayıcı başına adsorplanan madde miktarını (mg/g) ifade eder. \(C_i \): Bağlangıç derişimi (mg/L); \(C_e \): denge derişimi(mg/L); \(V \): hacim (L); \(m \): adsorplayıcıın kütle(g); \(q_{\text{max}} \): maksimum adsorpsiyon kapasitesi (mg/g); \(b \): Langmuir sabiti (L/mg) ; Temkin: 1941 Yılında Temkin ve Pyzhev’in çalışmaları, adsorban ile adsorbat ve adsorpsiyon ısıtı arasındaki etkileşimi inceleyerek yeni bir izoterm modeli geliştirmişlerdir. Bu çalışmada yüzeydeki tüm molekülerin enerjilerinin lineer olarak azalmasını nedeni adsorbanın yüzeyinin heterojen yapısı olmasından kaynaklanmaktadır.

Bu izotermde, adsorbe edilen maddeler arasındaki etkileşimler dikkate alınmakla birlikte, çözeltide bulunan tüm moleküller için adsorpsiyon entalpisi hesabı geliştirilmiştir. Bununla ilgili bağıntı ise 2.5 te olduğu gibidir.
\[q_e = B \ln AT + B \ln C_e \]
\[B = \frac{R}{b} \]
(2.5)

(2.6)

Burada, \(B(\text{J/mol}) \) cinsinden adsorpsiyon ısısı ile ilgili Temkin sabiti, \(A(\text{L/g}) \) maksimum bağlanma enerjisine karşılık gelen denge bağlanma sabiti, \(R(8,314 \text{ J/mol K}) \) evrensel gaz sabiti ve \(T(\text{Kelvin}) \) mutlak çözelti sıcaklığıdır.

Dubinin-Radushkevich: Adsorpsiyon türünü belirlemek amacıyla kullanılır. Bu amaçla elde edilen bağıntı 2.7 olarak verilmiştir.

\[\ln q_e = \ln q_m - K_{D-R} \varepsilon^2 \]
\[\varepsilon = RT \ln \left(1 + \frac{1}{C_e} \right) \]
\[E = \frac{1}{\sqrt{2k_{D-R}}} \]
(2.7)

(2.8)

(2.9)

Burada, \(q_e \) (mol/g) birim kütelenin adsorplanan metal miktarı, \(q_m \) (mol/g) tek tabaka kapasitesi, \(K_{D-R} \) ortalama sorpsiyon enerjisi ile ilgili aktiflik katsayısı ve \(\varepsilon \), Polanyi potansiyeli, \(C_e \) (mol/L) sulu çözeltideki denge metal derişimi, \(E \) (kJ/mol) ortalama adsorpsiyon enerjisidir ve denklem 2.7 -2.9 denklemleriley hesaplanabilir.

D-R modeli sabitleri olan \(q_m \) ve \(K_{D-R} \ln q_e \) nın \(\varepsilon^2 \) ye karşı grafiğe geçirilince elde edilen doğrunun eğiminden \(K_{D-R} \), kaymasından ise \(\ln q_m \) elde edilir.

Cu(II) iyonlarının aktive edilmiş karışık tip kil üzerinde adsorpsiyonundan elde edilen veriler Freundlich, Langmuir, Temkin ve Dubinin-Radushkevich izoterm modellerine uyarlanarak şekil 1,2,3,4’te verilmiştir.

\[\text{Freundlich-Cu-A} \]

\[\ln q_e = \ln q_m - K_{D-R} \varepsilon^2 \]

\[\varepsilon = RT \ln \left(1 + \frac{1}{C_e} \right) \]

\[E = \frac{1}{\sqrt{2k_{D-R}}} \]

Şekil 1. Farklı sıcaklıklardaki Cu(II) nin aktive edilmiş karışık tip kil üzerindeki Freundlich izotermi
Şekil 2. Farklı sıcaklıklardaki Cu(II) nin aktive edilmiş karışık tip kil üzerindeki Langmuir izotermi

Şekil 3. Farklı sıcaklıklardaki Cu(II) nin aktive edilmiş karışık tip kil üzerindeki Temkin izotermleri
Şekil 4. Farklı sıcaklıklardaki Cu(II) nin aktive edilmiş karışık tip üzerindeki D-R izotermeleri

Çizelge: 2. Cu(II)’nin aktive edilmiş kil üzerindeki adsorpsiyonuna ait, Langmuir, Freundlich, Temkin, Dubinin-Radushkevich (D-R) izoterm parametreleri

Freundlich İzoterm Modeli

\[
\ln q_e = \ln K_f + \frac{1}{n} \ln C_e
\]

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Denklem</th>
<th>K_f</th>
<th>n</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>(Y=0.1623x+1.6125)</td>
<td>5.02</td>
<td>6.16</td>
<td>0.8635</td>
</tr>
<tr>
<td>308</td>
<td>(Y=0.1753x+2.091)</td>
<td>8.09</td>
<td>5.70</td>
<td>0.8246</td>
</tr>
<tr>
<td>318</td>
<td>(Y=0.1656x+2.8082)</td>
<td>16.58</td>
<td>6.04</td>
<td>0.8782</td>
</tr>
</tbody>
</table>

Langmuir Adsorpsiyon Izotermi

\[
\frac{C_e}{q_e} = \frac{1}{K_L q_{\text{max}}} + \frac{C_e}{q_{\text{max}}}
\]

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Denklem</th>
<th>K_L (L/mg)</th>
<th>q_{\text{max}} (mg/g)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>(Y=0.0904x+0.9343)</td>
<td>0.096</td>
<td>11.06</td>
<td>0.9874</td>
</tr>
<tr>
<td>308</td>
<td>(Y=0.053x+0.1326)</td>
<td>0.399</td>
<td>18.86</td>
<td>0.9995</td>
</tr>
<tr>
<td>318</td>
<td>(Y=0.0269x+0.0645)</td>
<td>0.417</td>
<td>37.17</td>
<td>0.9996</td>
</tr>
</tbody>
</table>

Temkin İzoterm Modeli

\[
\ln q_e = B \ln K_T + B \ln C_e
\]

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Denklem</th>
<th>K_T</th>
<th>B</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>(Y=1.4465x+4.4231)</td>
<td>21.28</td>
<td>1.4465</td>
<td>0.7178</td>
</tr>
<tr>
<td>308</td>
<td>(Y=2.008x+8.5161)</td>
<td>69.40</td>
<td>2.0085</td>
<td>0.919</td>
</tr>
<tr>
<td>318</td>
<td>(Y=3.7212x+17.706)</td>
<td>116.52</td>
<td>3.7212</td>
<td>0.9622</td>
</tr>
</tbody>
</table>

Dubinin-Radushkevich (D-R) İzoterm Modeli

\[
\ln q_e = \ln q_{\text{max}} - B_D \varepsilon = RT \ln(1+1/C_e)
\]

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Denklem</th>
<th>K_D-R (X10^9)</th>
<th>E (KJ/mol)</th>
<th>q_{\text{max}} (mg/g)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>(Y=1.10^9x-8.3133)</td>
<td>1</td>
<td>22.37</td>
<td>15.47</td>
<td>0.787</td>
</tr>
<tr>
<td>308</td>
<td>(Y=2.10^9x-7.7077)</td>
<td>2</td>
<td>15.81</td>
<td>28.55</td>
<td>0.876</td>
</tr>
<tr>
<td>318</td>
<td>(Y=2.19^9x-7.093)</td>
<td>2</td>
<td>15.81</td>
<td>52.79</td>
<td>0.9166</td>
</tr>
</tbody>
</table>

Aktive edilen kil üzerindeki Cu (II) İzoterm sonuç verilerine bakıldığında ise, Langmuir adsorpsiyon izoterm modeline uyduğu belirlenmiştir olup, \(R^2 \) değerlerinin 0,98’ in üzerinde olduğu bulunmaktadır.

2.4.Temas Süresi ve Adsorpsiyon Kinetiği

Adsorpsiyon kinetiği, adsorplanan madde ile adsorban arasındaki temas süresini belirleyebildiği gibi, adsorpsiyonun hangi basamaklarda gerçekleştiğini de ifade etmektedir. Kinetik modeller zamana bağlı olarak aşağıdaki belirtilen modellerde incelenmektedir.

4. **Pseudo Birinci Derece Denklem (Lagergen Denklemi)**

\[
\frac{dq_e}{dt} = k_1 (q_e - q_t)
\]

Burada \(q_e \) (mg/g) dengedeki birim adsorplayıcı başına adsorplanan metal iyonu miktarı, \(q_t \), t zamandaki birim adsorplayıcı başına adsorplanan made miktarını, \(k_1 \) (dk)^{-1} birinci dereceden adsorpsiyon hız sabitidir. \(t = 0 \) iken \(q_t = 0 \) ve \(t \) de \(q_e = q_0 \) aralığında iken 1.6 denklemi integrali alır:

\[
\ln(q_e - q_t) = \ln q_e - k_1 t
\]
denklemi elde edilir. t’ye karşı $\ln(q_e - q_t)$ nin doğrusal grafiğinin eğim ve kesim noktalarından k_1 ve q_e değerleri bulunabilir(Baran ve Düz 2019).

5. Pseudo (yalancı)İkinci Derece Denklem (Ho-Mc Kay)

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2$$ (1.7)

Burada k_2 (g/mg*dk) ikinci dereceden hız sabiti, q_e (mg/g) maksimum adsorpsiyon kapasitesi, q_t (mg/g) t zamandaki adsorpsiyon miktarıdır.

$t=0$ iken $q_t=0$ ve $t=t$ de $q_t=q_e$ aralığında iken 1.7 denkleminin integrali alınırsa;

$$t = \frac{1}{k_2q_e} + \frac{t}{q_e}$$ (1.8)

Denklemi oluşur. Yalancı ikinci derece kinetik model sabitleri olan k_2 ve q_e, t’ye karşı t/q grafiğe geçirildiğinde elde edilen doğru denklemin eğim ve kaymasından elde edilir(Baran ve Düz 2019).

3. Elovich Eşitliği

$$q_t = \frac{1}{\beta} (ln\alpha \beta) + \frac{1}{\beta} ln t$$ (1.9)

Burada α (mg/g*dk) başlangıç sorpsiyon hızı, β (g/mg) kemosorpsiyon için yüzeyi kaplama ve aktivasyon enerjisinin bir ölçüsüdür. ln t’ ye karşı qı grafiğe geçirildiğinde elde edilen eğimden $\frac{1}{\beta}$ ve kaymasından ise $\frac{1}{\beta}$ (ln$\alpha \beta$) bulunabilir.

$$q_t = k_i \sqrt{t} + C$$ (1.9)

İntrapartikül difüzyon modeli 1.9 denklemi ie ifade edilmiştir. Bu ifadede q_t (mg/g), t zamandaki gram başına adsorplanan madde miktarıdır. k_i (mg/g*dk)$^{1/2}$ hız sabitidir.

t' ye karşı, q grafiğe geçirildiğinde çok basamaklı grafik eğrileri elde edilebilir. Adsorpsiyon işlemi üç ana aşamada gerçekleşebilir. Bunlar:

IV - Film difüzyonu
V - Intrapartikül veya gözenek difüzyonu
VI - İç bölgenin yüzeyindeki adsorpsiyon dur.

Cu II’nin aktive edilen kil üzerindeki sürenin etkisi incelendiğinde ilk 30 dakika adsorpsiyon olayının hızlı gerçekleştiği ve 120-150 dakika arasında dengeye geldiği görülmektedir. Bunun nedeni başlangıçta adsorbant’ın yüzeyinde aktif yerlerin boş olduğu, böylece Cu(II) iyonlarının boş olan aktif merkezlerle reaksiyon verdiği, zaman ilerledikçe aktif merkezlerin sayısı azaldığı için reaksiyonun hızı da azalmaktadır.

Adsorpsiyon kinetiği ile ilgili adsorpsiyon verileri Lagergren, Ho Mc Kay, Weber-Morris ve Elovich denklemlerine uygulanmış olup sonuçlar çizelge 3’t te ve 5,6,7,8,9 no’lu şekillerde verilmiştir.
Şekil 5. Farklı sıcaklıklardaki kinetik grafikler

Şekil 6. Farklı sıcaklıklardaki Lagergren grafikleri

Şekil 7. Farklı sıcaklıklardaki Ho Mc Kay grafikleri
Şekil 8. Farklı sıcaklıklardaki Weber-Morris grafikleri

Eloivich-Cu-A

Çizelge 3. Cu(II)’nin aktive edilmiş kil üzerindeki adsorpsiyonuna ait, Lagergren, Ho Mc Kay, Weber-Morris ve Elovich modellerine ait parametreler.

<table>
<thead>
<tr>
<th>Sıcaklık (°K)</th>
<th>Pseudo - First Order (Lagergren) Denklemi ln(qe - qt) = lnqe - kt</th>
<th>Pseudo - Second Order (Ho McKay) Denklemi t/qt = 1/qe + 1/k2qe²</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>Y = 0,1852x + 2,3083 R² = 0,488</td>
<td>Y = 0,0453x + 9,2792 R² = 0,0344</td>
</tr>
<tr>
<td>308</td>
<td>Y = 3,101x + 2,3083 R² = 0,7375</td>
<td>Y = 0,794x + 8,355 R² = 0,7507</td>
</tr>
<tr>
<td>318</td>
<td>Y = 3,7484x + 1,2316 R² = 0,8253</td>
<td>Y = 1,0298x + 8,0812 R² = 0,8532</td>
</tr>
</tbody>
</table>

Weber-Morris (İntrapartikül Difüzyon Modeli)
qₜ = Cₑ + Kₑₑₑ √t

Elovich Modeli
qₜ = 1/β ln(αβ) + 1/β ln t

<table>
<thead>
<tr>
<th>Sıcaklık (°K)</th>
<th>Doğru Denklemi</th>
<th>R²</th>
<th>kₑₑₑ (mg/dak)</th>
<th>lnqe (mg/g)</th>
<th>Doğru Denklemi</th>
<th>R²</th>
<th>k₂ (g/mg*dak)</th>
<th>qₑₑₑ (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>Y = 0,1852x + 2,3083</td>
<td>0,9963</td>
<td>0,0962</td>
<td>9,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>Y = 3,101x + 2,3083</td>
<td>0,9512</td>
<td>0,0019</td>
<td>23,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>Y = 3,7484x + 1,2316</td>
<td>0,8253</td>
<td>0,26</td>
<td>5,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kinetik hız denklemleri incelendiğinde, aktive edilen kilanı Pseudo Second Order (Ho MacKay-ikinci dereceden) kinetik modeline daha çok uyduğu genelde \(R^2 \) nin 0,95 üzerinde olduğu tespit edilmiştir.

2.5 pH Etkisi

![pH Etkisi-Cu](image)

Şekil 10. pH Etkisinin incelenmesi.

2.6 Termodinamik Hesaplamalar

Gibbs serbest enerji değişimi (\(\Delta G \)) ile entalpi değişimi (\(\Delta H \)) ve entropi değişimi (\(\Delta S \)), \((1.10)\) ile \((1.11)\) bağıntıları kullanılarak bulunmuştur.

\[
\Delta G = \Delta H - T \cdot \Delta S
\]
\[
\ln K_c = \frac{\Delta H}{R} \cdot \frac{1}{T} + \frac{\Delta S}{R}
\]

Bu eşitliklerde \(R \) ideal gaz sabiti (kJ/mol*K), \(T \) mutlak sıcaklık (Kelvin), entropi değişimi \(\Delta S \) ile entalpi değişimi \(\Delta H \) ise 1/T ye karşılık gelen \(\ln K_c \) grafiğinden 1.11’e göre bulunmuştur. Elde edilen verilen çizelge 4’te verilmiştir (Baran ve ark. 2018).

<table>
<thead>
<tr>
<th>Sıcaklık(Kelvin)</th>
<th>(\Delta G)(kJ/mol)</th>
<th>(\Delta H)(kJ/mol)</th>
<th>(\Delta S)(kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>-5,75</td>
<td>107,07</td>
<td>0,3786</td>
</tr>
<tr>
<td>308</td>
<td>-9,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>-13,32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SONUÇ VE TARTIŞMA

Yapılan deneySEL çalışmada, Cu(II) iyonlarının asit ile modifiye edilmiş kilin adsorpsiyonu üzerindeki sıcaklık, süre, karıştırma hızı, pH gibi parametrelerin etkisi araştırılmıştır. Cu(II) metal iyonlarının

KAYNAKLAR
Akıncı, Ö. 1968. Seramik Killeri ve jeolojisi. Maden Tetkik ve Arama Dergisi. (71)
Aksoy, Ö. 2012. Sulu Çözeltiden Bazı Boyarmaddelerin ve Bakır Metalinin Uzaklaştırılmasında Yeni Bir Adsorpsya Olarak Nar Posasının Değerlendirilmesi Dicle üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır
Akyıldız, H. 1990. Atıksulardan Ağır Metallerin Adsorpsyonlu (Doktora Tezi, Yayınlanmamış). İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul
Ardalı, Y. 1990. Atıksulardan Ağır Metallerin Adsorpsyonlu (Doktora Tezi, Yayınlanmamış). İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Samsun
Dinçtürk, O. 2006. Termik Santral Uçucu Kül Tiplerinin Atıksulardaki
İle Adsorpsiyonu

- Eski metallerden kurşun ve bakırın özelliklerini, alaşımlarını ve minerallerini taramalı elektron mikroskobunda (SEM) nedir? [https://www.techt-worm.com/taramali-elektron-mikroskobu].

AN IMPROVEMENT OF HYBRID WHALE OPTIMIZATION ALGORITHM

Mustafa DANACI
ERU Engineering Faculty, Computer Eng. Dept. Kayseri / TURKEY
danaci@erciyes.edu.tr
Bahadur ALIZADA
ERU, Computer Eng., Grad. School of Natural and Applied Sciences bahadur_alizade@yahoo.com

ABSTRACT
The difficulty in solving engineering problems creates difficulties in the selection of the methods to be used. Nature-inspired herd intelligence-based meta-heuristic optimization techniques have recently become the most popular algorithms for solving such problems. In this work, a new hybrid algorithm model has been developed to adapt to various problems. The developed models were adapted to 23 Benchmark test problems in the literature and compared with meta-heuristic algorithms. The algorithms aim to balance the optimization processes of exploration and exploitation. In the development of a meta-heuristic algorithm, it is very difficult to achieve a balance due to its stochastic structure. In this study, the new hybrid model improved by Multi-Verse Optimization (MVO) on the Sine Cosine Whale Optimization Algorithm (SCWOA) hybrid model, which is available in the literature, has increased the success of test problems. Although the SCWOA hybrid balances exploitation and exploration, the MVSCWOA (Multi-Verse Sine Cosine Whale Optimization Algorithm) hybrid algorithm, which was modified by modifying MVO's wormhole existence probability (WEP) and traveling distance rate (TDR), has succeeded in improving this balance further. WEP is used instead of \(r_1 \) parameter, which determines the update direction in SCA, and TDR is used in place of \(a_2 \) (varies between -1 and -2) used in the update of I, which is the inter-element multiplication parameter in WOA. The results obtained from the newly developed hybrid model have shown that it makes the search and exploitation feature more effective by showing better results than SCWOA, WOA, SCA, and MVO. MVSCWOA was successful in test problems.

Keywords: Benchmark, Sine Cosine Algorithm, Whale Optimization Algorithm, Multi-Verse Optimization

1. INTRODUCTION
In recent years, meta-heuristic algorithms have been used more and more to solve, minimize or maximize various problems in almost every aspect of our lives. This is because these algorithms are user-understandable, adaptable to real-life problems, and are simple because they are inspired by events in nature. Examples of famous meta-heuristic algorithms are Genetic Algorithm (GA) [1,2], Ant Colony Optimization (ACO) [3], Particle Swarm Optimization (PSO) [4], Differential Evolution (DE) [5], Evolutionary Programming (EP) [6,7], Artificial Bee Colony (ABC) [8]. According to No Free Lunch (NFL) [9] theorem, it has proved to be not the most appropriate meta-heuristic technique to solve all optimization problems. Therefore, scientists are creating new meta-heuristic optimization techniques by keeping their motivation high: Firefly Algorithm (FA) [10,11], Black Hole (BH) [12], Grey Wolf Optimization (GWO) [13], Cuckoo Search (CS) [14,15], Gravitational Search Algorithm (GSA) [16], Fast Evolutionary Programming (FEP) [17], Whale Optimization Algorithm (WOA) [18], Multi-Verse Optimizer (MVO) [19], Ant Lion Optimizer (ALO) [20], Sine Cosine Algorithm (SCA) [21].

To improve the efficiency of optimization algorithms, various algorithms such as hybrid, optimization, and modification are developed. Through these processes, more successful results are obtained by balancing exploitation and exploration. The missing aspects of two or more algorithms are eliminated by combining advantageous features.

In this research, a previous study in the literature the hybrid Sine Cosine Whale Optimization Algorithm (SCWOA) [22] is developed with the Multi-Verse Optimizer (MVO) algorithm. Through improvement, the balance between exploitation and exploration has been further improved. The
improved hybrid algorithm has confirmed itself with test problems. Benchmark functions [23] are used as test problems.

Benchmark functions

Any Benchmark is functional for testing an optimization concept. These aggregate functions can be parsed, differentiated, continuous, discontinuous, scalable, unimodal and multimodal features such as existing algorithms that can be effective information about which kind of problems can be obtained by applying these functions.

The unimodal benchmark does not have a local optimum and has only one global optimum. This makes them very suitable for testing convergence speed and retrieving from algorithms [20]. Detailed information can be made in Table 1 (F1-F7).

Multi-mode benchmarks have multiple local and one global optimizations. The goal of the algorithms is to achieve the best global result without having to stick to the local best result. [20].

If there is a problem in the discovery phase of the algorithm, then a wide search cannot be made. Therefore, the algorithm remains stuck to the local best result, which is not desirable. This is one of the reasons why multimode functions are difficult. [23].

Compared to multimodal functions, fixed-dimension multimodal functions do not allow the number of design variables to be set because of their mathematical formulas but provide a different search field [18]. The properties of the multimodal functions are given in Table 1, respectively n-dimensional (F8-F13) and fixed-dimensional (F14-F23).

At the end of the work, the test plans on three groups of Benchmarks with hybrid characteristics were compared to other meta-heuristic optimization algorithms in the literature.
<table>
<thead>
<tr>
<th>Name and Function</th>
<th>Dim</th>
<th>Range</th>
<th>f_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere F1(x)=$\sum_{i=1}^{n} x_i^2$</td>
<td>30</td>
<td>[-100, 100]</td>
<td>0</td>
</tr>
<tr>
<td>Schwefel2.22 F2(x)=$\sum_{i=1}^{n}</td>
<td>x_i</td>
<td>+ 10\sum_{i=1}^{n}</td>
<td>x_i</td>
</tr>
<tr>
<td>Schwefel1.2 F3(x)=$\sum_{i=1}^{n} (\sum_{j=1}^{i-1} x_j)^2$</td>
<td>30</td>
<td>[-100, 100]</td>
<td>0</td>
</tr>
<tr>
<td>Schwefel2.14 F4(x)=$\max {</td>
<td>x_i</td>
<td>, 1 \leq i \leq n }$</td>
<td>30</td>
</tr>
<tr>
<td>Rosenbrock F5(x)=$\sum_{i=1}^{n-1} (100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2)$</td>
<td>30</td>
<td>[-30, 30]</td>
<td>0</td>
</tr>
<tr>
<td>Step F6(x)=$\sum_{i=1}^{n} (x_i + 0.5)^2$</td>
<td>30</td>
<td>[-100, 100]</td>
<td>0</td>
</tr>
<tr>
<td>Quartic F7(x)=$\sum_{i=1}^{n} i x_i^4 + \text{random}(0, 1)$</td>
<td>30</td>
<td>[-1.28, 1.28]</td>
<td>0</td>
</tr>
<tr>
<td>Schwefel F8(x)=$\sum_{i=1}^{n} -x_i \sin(\sqrt{</td>
<td>x_i</td>
<td>})$</td>
<td>30</td>
</tr>
<tr>
<td>Rastrigin F9(x)=$\sum_{i=1}^{n} x_i^2 - 10 \cos(2\pi x_i) + 10$</td>
<td>30</td>
<td>[-5.12, 5.12]</td>
<td>0</td>
</tr>
<tr>
<td>Ackley F10(x)=$-20 \exp(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}) - \exp(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)) + 20 + e$</td>
<td>30</td>
<td>[-32, 32]</td>
<td>0</td>
</tr>
<tr>
<td>+20+e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griewank F11(x)=$\frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos(\frac{x_i}{\sqrt{n}})$</td>
<td>30</td>
<td>[-600, 600]</td>
<td>0</td>
</tr>
<tr>
<td>Penalized F12(x)=$\frac{1}{n} \left[10 \sin(\pi y_1) + \sum_{i=1}^{n} (y_i - 1)^2 [1 + \sin^2(\pi y_{i+1})] \right] + (\sum_{i=1}^{n} y_i)$</td>
<td>30</td>
<td>[-50, 50]</td>
<td>0</td>
</tr>
<tr>
<td>Ackley F13(x)=$\sum_{i=1}^{n} (k (x_i - a)^{m} x_i > a)$</td>
<td>30</td>
<td>[-50, 50]</td>
<td>0</td>
</tr>
<tr>
<td>Foxholes F14(x)=$\frac{1}{500} + \sum_{j=1}^{n} \sum_{j=1}^{n} (x_i - a_j)^{a}$</td>
<td>2</td>
<td>-65.65</td>
<td>1</td>
</tr>
<tr>
<td>Kowalik F15(x)=$\frac{1}{n} \left[\sum_{i=1}^{n} \left[L^i - \frac{x_i (d^2 + b)^2}{d^2 + b^2 + c x_i} \right] \right]$</td>
<td>4</td>
<td>-5.5</td>
<td>0.00030</td>
</tr>
<tr>
<td>Camel Six Hump F16(x)=4$x_1^2+2.1x_1^4+\frac{3}{2} x_1^6+x_1^2 x_2^2+4x_2^4+\frac{1}{3} x_2^6$</td>
<td>2</td>
<td>-5.5</td>
<td>-1.0316</td>
</tr>
<tr>
<td>Branin RCOS F17(x)= $(x_2 - \frac{5 \pi}{2} x_1^2 + \frac{5 \pi}{2} x_1 - 6)^2 + 10 \left(1 - \frac{\sin(x_1)}{\pi}\right) \cos x_2 + 10$</td>
<td>2</td>
<td>-5.5</td>
<td>0.398</td>
</tr>
<tr>
<td>Gold Stein Price F18(x)=$\left[1 + (x_1 + x_2 + 1)^2 \left(19 - 14 x_1 + 6 x_2 x_2 + 3 x_2^2 \right) \right] \times \left[30 + (2 x_1^2 + 2 x_1 x_2 + 27 x_2^2) \right]$</td>
<td>2</td>
<td>[-2, 2]</td>
<td>3</td>
</tr>
<tr>
<td>Hartman3 F19(x)=$\sum_{i=1}^{n} c_i \exp \left(-\sum_{j=1}^{n} a_j (x_j - p_j)^2 \right)$</td>
<td>3</td>
<td>[1, 3]</td>
<td>-3.86</td>
</tr>
<tr>
<td>Hartman6 F20(x)=$\sum_{i=1}^{n} c_i \exp \left(-\sum_{j=1}^{n} a_j (x_j - p_j)^2 \right)$</td>
<td>6</td>
<td>[0, 1]</td>
<td>-3.32</td>
</tr>
<tr>
<td>Shekel5 F21(x)=$\sum_{i=1}^{n} (x_i - a_i)^2 + c_i$</td>
<td>4</td>
<td>[0, 10]</td>
<td>-10.1532</td>
</tr>
<tr>
<td>Shekel7 F22(x)=$\sum_{i=1}^{n} (x_i - a_i)^2 + c_i$</td>
<td>4</td>
<td>[0, 10]</td>
<td>-10.4028</td>
</tr>
<tr>
<td>Shekel10 F23(x)=$\sum_{i=1}^{n} (x_i - a_i)^2 + c_i$</td>
<td>4</td>
<td>[0, 10]</td>
<td>-10.5363</td>
</tr>
</tbody>
</table>
2. RELATED WORKS

2.1. Whale Optimization Algorithm (WOA)

One of the new and successful swarm intelligence-based optimization algorithms introduced by Mirjalili is the Whale Optimization Algorithm (WOA) [18]. The algorithm was created by modeling humpback whale encircling prey; bubble-net attacking, and search for prey behavior. Successful results have been achieved by making improvement by Danaci and Doğan [24], various hybrids by Khalilpourazari and Khalilpourazary [22], Singh and Hachimi [25], Doğan [26] and improvement hybrid model by ALIZADA [27] on WOA.

Encircling prey

Humpback whales encircle it after defining the position of its prey. Since the positions are not predetermined at the beginning, the WOA algorithm considers the best solution for the moment as prey. In other words, hunting is considered to be near optimum. Immediately after the best whale is identified, other whales in the population update their position accordingly. The following equation models this behavior:

1. \[\vec{D} = |\vec{C} \cdot \vec{x}^*(t) - \vec{x}(t)| \]
2. \[\vec{x}(t + 1) = \vec{x}^*(t) - \vec{A} \cdot \vec{D} \]

\(t \) shows the momentary repetition, the position of the best humpback whale (solution) so far \(\vec{x}^* \) provides the position of the best humpback whale obtained so far. \(\vec{A} \) and \(\vec{C} \) vectors are the specific coefficients.

Bubble-net attacking method (exploitation phase)

The behavior of humpback whales is shown by a mathematical model consisting of two parts. These processes are the shrinking encircling and the spiral update of position respectively. The bubble hunting technique of the whale is given in the Figure 1.

![Figure 1. Bubble-net feeding behavior of humpback whales.](image)

Humpback whale floats upward in spiral or helical shape for hunting. It is known that humpback whales in nature perform both narrowing circle or spiral swim simultaneously. Therefore, the algorithm uses both behavior mechanisms with a 50 percent probability. This time can randomly choose the narrowing swim.

\[\vec{x}_{(t+1)} = \begin{cases} \vec{x}_{(t)} - \vec{A} \cdot \vec{D} & \text{if } p < 0.5 \\ \vec{x}_{(t+1)} = \vec{D} \cdot e^{\mu p} \cdot \cos(2\pi t) + \vec{x}_{(t)} & \text{if } p \geq 0.5 \end{cases} \]
Search for prey (exploration phase)

During the exploitation phase, the whale in the population updates its position towards the best whale. But during the exploration phase, an update is made according to a randomly selected whale. The mathematical model of the discovery phase is as follows.

\[
\overline{D} = |\overrightarrow{D_{\text{rand}}} - \overrightarrow{x}| \\
\overrightarrow{x}(t+1) = \overrightarrow{D_{\text{rand}}}_t - \overrightarrow{A} \cdot \overline{D}
\]

(4)

(5)

2.2. Sine Cosine Algorithm (SCA)

One of the meta-heuristic optimization algorithms introduced by Mirjali is the Sine Cosine Algorithm [21]. First, SCO generates a random array of solutions. Next, it chooses the best individual solution to be the target for other solutions according to its objective function value. Each individual in the population updates their position according to the best individual. This update is provided by the following equation.

\[
x_{t+1}^j = \begin{cases}
X_t^j + r_1 \times \sin(r_2) \times |r_3 P_t^j - X_t^j|, & r_4 < 0.5 \\
X_t^j + r_1 \times \cos(r_2) \times |r_3 P_t^j - X_t^j|, & r_4 \geq 0.5
\end{cases}
\]

(6)

\(X_t^j\) is the individual in the \(t\)-th iteration population. \(P_t^j\) is the position of the best individual ever obtained, and \(r_1\) (update direction), \(r_2\) (update distance), \(r_3\) (stochastic distance identifier), \(r_4\) (choose a sine or cosine) are random numbers.

2.3. Multi-Verse Optimizer (MVO)

One of the physics-based optimization techniques proposed by Mirjalili is the Multi-Verse Optimizer [19]. Algorithm is inspired by the three main concepts: white holes, black holes, and wormholes.

Two important coefficients are considered: wormhole existence probability (WEP) and travel distance ratio (TDR). WEP represents the possibility that the wormhole exists in the universe. The TDR shows the wormhole irradiation distance around the best universe so far. Mathematical formulas for both coefficients are as in (16) and (17), respectively.

\[
WEP = \text{min} + l \times \left(\frac{\text{max} - \text{min}}{L} \right)
\]

(7)

\(l\) represents instantaneous iteration; \(L\) represents maximum iteration.

\[
TDR = 1 - \frac{l^n/p}{L^{1/p}}
\]

(8)

\(p\) defines the accuracy of exploitation. High value means that it has a good phase of exploitation.

2.4. Improved Hybrid Model

SCWOA, which has already been introduced to the literature, is a hybrid model that balances both by taking into account the good search capability of the WOA and the good exploitation feature of the SCA. In this study, a triple hybrid has been developed by making a new improvement on the existing hybrid model by using the Multi-Verse Optimizer features. The motivation source, mathematical model and pseudocode of the model are given below.

SCWOA, a hybrid of SCA and WOA previously found in the literature, is an algorithm that has managed to balance both search and exploitation characteristics. In the study, some of the features of MVO were replaced with the features found in SCWOA. Two features were used in the study. These are the WEP and TDR found in the multi-verse algorithm. WEP is used instead of the parameter \(r_1\), which determines the update direction in SCA, and TDR is replaced by \(a_2\) (ranging from -1 to -2), which is used for the update of the inter-element multiplication parameter \(l\) in WOA. The results from
the newly developed hybrid model have proven to be more effective than SCWOA, WOA, SCA, and MVO, making search and exploitation characteristics more efficient.

4.1. Proposed Mathematical model

In the created model, the function that occurs when the SCA updates operator is replaced by the narrowing containment mechanism of WOA is indicated below.

\[X_{t+1}^i = \begin{cases} X_t^i + \alpha \times \sin(\beta) \times |r_3 X_{t}^i - X_t^i|, & q < 0.5 \\ X_t^i + \alpha \times \cos(\beta) \times |r_3 X_{t}^i - X_t^i|, & q \geq 0.5 \end{cases} \] \tag{9}

Replicas \(r_1 \) and \(\alpha_2 \) are also replaced by WEP and TDR that run on iterations. These are more clearly understood in the pseudocode.

Pseudocode

1. Initialize random population.
2. Calculate the fitness of each search agent.
3. The best search agent = \(X^* \).
4. While the last criterion is not met
5. for each search agent
6. Update \(A, l, p, WEP \) Eq. (7), \(TDR \) Eq. (8), \(r_2, r_3, \) and \(r_4 \)
7. if1(\(p < 0.5 \))
8. if2(\(r_4 < 0.5 \))
9. Update the position of the current search agent by Eq. (9)
10. else if2(\(r_4 \geq 0.5 \))
11. Select a random search agent
12. Update the position of the current search agent by Eq. (9)
13. end if2
14. else if1(\(p \geq 0.5 \))
15. Update the position of the current search by the Eq. (3)
16. end if1
17. end for
18. Check if any search agent goes beyond the search space and amend it.
19. Calculate the fitness of each search agent.
20. Update \(X^* \) if there is a better solution
21. \(t = t + 1 \)
22. end while
23. Return \(X^* \)

5. RESULTS

In the MVSCWOA experiment, the number of populations was 30; the number of iterations was 500, and the dimensions of the Benchmark function were adjusted by setting as previously stated in the Benchmark function tables. Each function was run 30 times, and the mean of the obtained values were calculated. Comparison time MVSCWOA, SCWOA, SCA, MVO algorithms were run. The MVO Matlab code is available from Mirjalili’s open-source code. Benchmarking time was run with the same parameters. From the article about WOA, the results of WOA, PSO, GSA, and FEP algorithms were compared and a total of seven algorithms were compared. The results are shown in Table 2.

When the results of the MVSCWOA algorithm are examined, the results of F9 over performance, F1-F4, F7, F9-F11, F16, and F21 functions are very good. Of these, F1-F4, F9-F10, and F16 showed better results than all algorithms in comparison, F7, F11, F21 showed second place in comparison. In other functions showed average and approximate results. Overall, an average improvement was made.
Table 2. Performance analysis with benchmark function results

<table>
<thead>
<tr>
<th>M</th>
<th>f</th>
<th>f_min</th>
<th>MVSCWOA</th>
<th>1-SCWA</th>
<th>2-WOA</th>
<th>8-SCA</th>
<th>4-MVO</th>
<th>5-PSO</th>
<th>8-GSA</th>
<th>7-FEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0</td>
<td>1.63350-05</td>
<td>2.5662E-30</td>
<td>1.41E-30</td>
<td>17.45446E2</td>
<td>1.25165E5</td>
<td>0.000136</td>
<td>2.53E-16</td>
<td>0.00057</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>0</td>
<td>1.9681E-34</td>
<td>1.2455E-16</td>
<td>1.06E-21</td>
<td>0.018628</td>
<td>9.51901E5</td>
<td>0.041214</td>
<td>0.05555</td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>0</td>
<td>1.6432E-55</td>
<td>4.8624E-27</td>
<td>5.39E-07</td>
<td>1.01655E4</td>
<td>245.75308E</td>
<td>70.1256</td>
<td>896.5547</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>0</td>
<td>1.6259E-32</td>
<td>7.399E-16</td>
<td>0.072581</td>
<td>5.23577E3</td>
<td>1.78251E5</td>
<td>1.08641E1</td>
<td>7.35487</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>0</td>
<td>2.71003</td>
<td>27.20027</td>
<td>27.86558</td>
<td>4838.494</td>
<td>298.2843</td>
<td>96.71382</td>
<td>67.54309</td>
<td>5.06</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>0</td>
<td>2.56737</td>
<td>0.237278</td>
<td>3.116266</td>
<td>19.44915</td>
<td>1.25608E5</td>
<td>0.00016</td>
<td>2.51E-16</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>0</td>
<td>0.000333</td>
<td>0.000316</td>
<td>0.001425</td>
<td>0.09472</td>
<td>0.037924</td>
<td>0.122854</td>
<td>0.089441</td>
<td>0.1415</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>-1.259487</td>
<td>-1.571557</td>
<td>-1.15155</td>
<td>-5.08076</td>
<td>-571.787</td>
<td>-7844.6521</td>
<td>-8481.29</td>
<td>-2821.07</td>
<td>-1.259487</td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>149.87198E2</td>
<td>123.0591E2</td>
<td>46.70425E2</td>
<td>25.96841E2</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>0</td>
<td>8.8918E-16</td>
<td>8.3409E-15</td>
<td>7.4043</td>
<td>15.77895</td>
<td>1.95104E7</td>
<td>0.276015</td>
<td>0.062087</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>0</td>
<td>4.995E-16</td>
<td>0</td>
<td>0.000289</td>
<td>1.04953E1</td>
<td>0.08532E6</td>
<td>0.009215</td>
<td>27.70154</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>0</td>
<td>0.191217</td>
<td>0.01909</td>
<td>0.539676</td>
<td>548.27855</td>
<td>1.86473E8</td>
<td>0.00016</td>
<td>1.298617</td>
<td>0.2486</td>
<td></td>
</tr>
<tr>
<td>F13</td>
<td>0</td>
<td>1.934423</td>
<td>0.1518</td>
<td>1.18901E6</td>
<td>69343.16</td>
<td>0.213151</td>
<td>0.005675</td>
<td>8.859084</td>
<td>0.00016</td>
<td></td>
</tr>
<tr>
<td>F14</td>
<td>1</td>
<td>5.71811E3</td>
<td>1.26363E3</td>
<td>2.11297E3</td>
<td>1.92552E3</td>
<td>0.9988</td>
<td>3.62716E8</td>
<td>5.85983E3</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>F15</td>
<td>0.00030</td>
<td>0.000593</td>
<td>0.000674</td>
<td>0.000572</td>
<td>0.001002</td>
<td>0.000481</td>
<td>0.000577</td>
<td>0.003673</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>F16</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td>-1.0316</td>
<td></td>
</tr>
<tr>
<td>F17</td>
<td>0.363</td>
<td>0.397949</td>
<td>0.397986</td>
<td>0.397914</td>
<td>0.399938</td>
<td>0.397982</td>
<td>0.397887</td>
<td>0.397887</td>
<td>0.398</td>
<td></td>
</tr>
<tr>
<td>F18</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Best result - Secondary Best result

The selected parameter settings make the problems more challenging, allowing hybrid algorithms to perform more easily. This can be generally evaluated by selecting the size as 30 in n-dimensional Benchmark functions. Dimensions, search area, population size, iteration number were determined according to various studies and selected articles. Since the algorithms operate with random logic, averaging 30 times, the code is run for each function. Thus, the result becomes more pronounced.

Although the SCWOA hybrid balances exploitation and exploration, MVO’s MVSCWOA hybrid algorithm, which was developed using MVO’s WEP and TDR, has further improved this balance.

The performance of the newly developed MVSCWOA hybrid algorithm has been compared. MVSCWOA was successful in 9 out of 23 test problems. According to the test results, it showed good results in both unimodal and multimodal test problems. This shows that the developed model has improved the convergence rate further and finds the global optimum without being attached to the local optimum.

6. CONCLUSION

In this study, the performance analysis was evaluated by adapting the developed hybrid algorithm to 23 Benchmark functions for testing purposes. The test functions used differ from each other in terms of features, and comprehensive evaluation is obtained. Compared to the algorithms used in the study and the results of some popular optimization algorithms used in the comparison, the developed hybrid model was observed to be quite successful.

Each of the SCA, WOA, and MVO algorithms affect the results according to their optimization process. Although SCA is good at exploitation, it is not good at exploration. WOA is the opposite. MVO has both exploitation and discovery features. The hybrid model developed in the study aimed to achieve better results by combining the features, and it was found to produce highly successful and competitive results. The performance of the hybrid algorithms can be examined in a wider field by adapting the experiments to future problems such as traveling salesman problem (GSP), real-life problems and engineering problems. Hybridizations can also be performed in different tests in terms of exploitation and exploration.
REFERENCES
ÇÖREK OTU BITKISI (Nigella sativa L.) ÖZÜTÜ KULLANILARAK TiO₂NP’lerin SENTEZ VE ANTIMIKROBIYAL ÖZELLİKLERİNIN BELIRLENMESİ
SYNTHESIS AND DETERMINATION OF ANTIMICROBIAL PROPERTIES OF TiO₂NPs USING NIGELLA SATIVA L. EXTRACT

Mehmet Fırat BARAN¹, Hilal AÇAY², Cumali KESKİN²*, Hüsamettin AYGÜN³, Ayfer YILDİRİM⁴

¹²Mardin Artuklu Üniversitesi, Tibbi Hizmetler ve Teknikler Bölümü, Sağlık Hizmetleri Meslek Yüksekokulu
²Mardin Artuklu Üniversitesi, Sağlıklı Bilimler Fakültesi, Beslenme ve Diyetetik Bölümü,
³Dicle Üniversitesi Biyoloji Bölümü Diyarbakır.
*Sorumlu yazar: ckeskinoo@gmail.com

ÖZET
Nanopartiküllerin biyolojik yeşil yolla sentezi, kimyasal ve fiziksel yöntemlere alternatif olarak kullanlan bir yöntemdir. Nanopartiküller sahip oldukları eşsiz özellikler ve geniş yüzey alanlarına bağlı olarak antimikrobiyal etki göstermektedir. Bu çalışmada atık durumdaki biyolojik materyalden (çörek otu yaprak özütünden) yararlanarak titanyum dioksit nanopartiküller (TiO₂NPs) etkili bir şekilde sentezlenmiştir. Bu amaçla sentezlenecek titanyum dioksit nanopartiküller gram pozitif, gram negatif ve mantar mikroorganizmaları üzerinde minimum inhibisyon yöntemi (MIC) ile antimikrobiyal etkileri araştırıldı. Elde edilen nanopartiküllerin karakterizasyonu Fourier-transform infrared spektroskopisi (FTIR), taramalı elektron mikroskobu (SEM), enerji dağılımı X-ışını (EDX), ultraviyole ve görüşür ışık absorpsiyon spektrotometresi (UV-Vis), termogravimetrik ve diffrensiyel termal analiz (TGA-DTA) ve X-ışını kırınımı (XRD) cihazları kullanılarak yapıldı. Sonuç olarak biyolojik kaynakla sentezlenen ve karakterizasyonu yapılan TiO₂NP’lerin güçlü antimikrobiyal etkiye sahip oldukları ve alternatif antimikrobiyal ajan olarak kullanlabileceğine tespit edildi.

Anahtar kelimeler: TiO₂, yeşil sentez, Nigella sativa, XRD ve TGA-DTA, FTIR, SEM.

ABSTRACT
The green-way synthesis of nanoparticles is an alternative to chemical and physical methods. Nanoparticles have an antimicrobial effect due to their unique properties and large surface areas. In this study, titanium dioxide nanoparticles (TiO₂NPs) were efficiently synthesized by utilizing waste biological material (Nigella sativa L. leaf extract). Antimicrobial effects of synthesized titanium dioxide nanoparticles on gram-positive, gram-negative and fungal microorganisms were investigated with the minimum inhibition method (MIC). Characterization of the obtained nanoparticles was determined by using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), ultraviolet and visible light absorption spectrophotometry (UV-Vis), thermogravimetric and differential thermal analysis (TGA-DTA) and X-ray diffraction (XRD) devices. As a result, it was determined that TiO₂NPs synthesized and characterized by biological sources have a strong antimicrobial effect and can be used as an alternative antimicrobial agent.

Keywords: TiO₂; green synthesis; Nigella sativa; XRD and TGA-DTA, FTIR, SEM

1.Giriş

Şekil 1. Çörek otu bitkisi.

2.Materyal ve Metot

2.1. Çörek otu (Nigella sativa L.) bitki öztü ve titanyum(III) klorid (TiCl₃) çözeltisinin hazırlanması
Çörek otu bitkisi Mardin Kızıltepe yolu 5. Km’dede çiçeklenme döneminde (Temmuz-Ağustos 2019) toplandı. Atık durumdaki yeşil yapraklar musluk suyu ile yıkanarak toprakdan arındırıldı, yıkama işlemi saf su ile tekrarlanarak çeşme suyundaki olası metal kontaminasyonu giderildi. Yıkanan çörek otu yaprakları oda koşullarına kuruma bırakıldı. Kurutulan bitki yaprakları öğütüldükten sonra nemsiz bir ortamda muhafaza edildi. 5 gr bitki örnekleri 100 ml saf su ile birlikte bir beherin içerisine konulduktan sonra kaynama bırakıldı. Kaynayan özüt oda koşullarında soğutuldu. Elde edilen özüt sızıme işlemini tabi tutuldu. Elde edilen sızımbta deneylerde kullanılmak üzere +4 °C de muhafaza edildi. Ticari olarak temin edilen (Sigma-Aldrich marka) % 12.0 safliktaki titanyum(III) klorid (TiCl₃) t 1 mM sulu çözelti hazırlanmıştır.

2.2. Nanopartikül sentezi ve karakterizasyonu
100 ml çörek otu bitki öztü ile titanyum(III) klorid çözeltisi (pH:6.0) bir beherde konuldu. Isıtıcılı manyetik karıştırıcı yardımıyla 45 °C de bitki öztü ve metal çözeltisi reaksiyon ortamına bırakıldı. 4 saat sonra renk değişimi gözlemlendi. Agilent Cary 60 UV-Visible spektroskopi cihazı ile 30 dakika aralıklarla alınan örneklerden TiO₂NP’lerin oluşumu ve varlığı gözlemlendi. Agilent Cary 630 FT cihazı ile çörek otu bitki öztütunde varolan fonksiyonel gruplar ve reaksiyon sonunda indirgeomeden sorumlu olan fonksiyonel grupta değişim tespi edildi. Oluşan renkli çözelti 6000 rpm de 10 dakika santrifüj (OHAUS FC 5706) edildi. Her defasında süpermatant alınarak çökent kısmlar toplandı. Bu işlem sonucunda elde edilen çökelti saf su ile birikça defa yıkanma işlemini tabi tutuldu. Toplanan çökelti 80 °C de 24 saat kurutulmaya bırakıldı. Elde edilen nanopartikül materyallerin X-ışıني difraktometresi (RadB-DMAX II bilgisayar kontrollü) ve taramalı elektron mikroskobu (EVO 40 LEQ) kullanarak görüntüleri (kristal yapıt, boyut) ve element kompozisyonları belirlendi. TGA-50 (Shimadzu) cihazı kullanarak TiO₂NP’lerin farklı sıcaklıklardaki termogravimetrik ve difarensiyel termal (TGA-DTA) bozunumları incelendi.

2.3. TiO₂NP’lerin antimikrobiyal aktivitelerinin belirlenmesi
Sentezelenen TiO₂NP’lerin bazı mikroorganizmaların üremesi üzerindeki inhibisyon etkileri gram negatif (Escherichia coli ATCC 25922), gram pozitif (Staphylococcus aureus ATCC 29213) bakteriler ve Candida albicans mayasi kullanarak minimum inhibisyon konsantrasyonu (MIK) mikrodilüsyon metoduyla belirlendi. Mikroplaka kuyucuklarına Muller Hinton besiyerini, farklı konsantrasyonlarda TiO₂NP çözeltisi ve Mc Farland standardı 0.5’e (bulanıklık) göre hazırlanmış mikroorganizma
karışımından konuldu. 37 °C de 24 saat inkübasyona bırakıldı. TiO₂NP’lerin antimikrobiyal etkilerinin karşılaştırılması için ticari olarak temin edilen S.aureus bakterisi için vankomisin, E.coli bakterisi için colistin ve C. albicans mayası için flukanozol standart antibiyotikleri kullanıldı. Böylece 1 mM TiO₂NP sulu çözeltisinin mikroorganizmalar üzerindeki antimikrobiyal etkilerine araştırıldı.

3.Bulgular ve tartışma
Atık durumda çörek otu yeşil yapraktan elde edilen 100 mL özüt ile 1 mM 250 mL TiCl₃ çözeltisi bir behere konularak 45°C’de dört saat boyunca karıştırıldı ve reaksiyon sonunda renk değişimi meydana geldi (Şekil 2). Meydana gelen bu renk değişimi plazma yüzeyindeki titreşimlerle TiO₂NP’lerin varlığını ifade eder. Maksimum absorbans olan 390 nm’de tespit edilen pikler TiO₂NP’lerin oluştuğunu göstermektedir (Şekil 2). Nasrollahzadeh ve Sajadi (2015), yapmış oldukları bir çalışmada TiO₂NP’lerin yakın dalga boylarında benzer pikler verdiği bildirmişti.

İnfrared spektroskopi (FTIR) analizinde TiO₂NP’lerin yeşil sentezinde indirgemeden sorumlu fonksiyonel gruplar incelendi. Çörek otu bitkisinde var olan belli gruplardaki (3330, 2330 ve 1636 cm⁻¹) kaymalar, reaksiyonun bu fonksiyonel gruplar üzerinde gerçekleştiğini düşündürmektedir (Şekil 3). Benzer bir çalışmada titanyum dioksit nanopartikül sentezinde etkin grupların 3300 cm⁻¹ deki fonksiyonel grubun reaksiyonda rol aldığı ifade etmişlerdir (Mulmi vd. 2018),(Acay, Baran, ve Eren 2019),(Li vd 2019).

Çörek otu bitkisinin yeşil yaprakları ile sentezlenen TiO₂NP’lerin X-ışınımı kırımı (XRD) değerlendirildi (Şekil 4.). XRD sonuçlarında (1 0 1), (1 0 3), (0 0 4), (1 1 2), (2 0 0), (1 0 5), (2 1 1), (2 0 4), (1 1 6), (2 2 0) ve (2 1 5) de ki piklerin titanyum dioksitin karakteristik kristal yapısına ait olduğu.
ve bu piklerin 2θ değerleri sırası ile 24.08, 26.76, 35.17, 39.70, 41.66, 43.89, 53.72, 55.51, 68.19 ve 76.34 olduğu görülmektedir. Diğer çalışmalar ile karşılaştırıldığında sonuçların uyumlu olduğu tespit edildi (Santhoshkumar vd. 2014)(Nasrollahzadeh ve Sajadi 2015)(Srinivasan vd. 2019). Yapılan bu çalışmada titanyum dioksit nanopartiküllerin boyutunu xrd deseninden en yüksek pikin 2 θ’daki değerinden hesaplanıldı.

XRD analizi sonucunda TiO$_2$NP’lerin kristal tanecik boyutunun 30.61 olduğu Debye-Scherrer eşitsizliği kullanılarak hesaplandı.

$$D = \frac{K\lambda}{(\beta \cos \theta)}$$

Eşitsizlikte D = Parçacığın boyutu (nm), K = Sabit (0.90), λ = Dalgaboyu X-ray (1.5406 Å), β = En yüksek pikin değerinin yarısı radyan cinsinden (FWHM), θ = Kırılma açısı olarak belirtilmiştir (Baran ve acay 2019; Eren ve Baran 2019).

Şekil 4. TiO$_2$NP’lerin XRD analiziyle kristal yapısı ve titanyumdioksit fazlarının incelenmesi.

Taramalı elektron mikroskobu (SEM) analizi verileri incelendiğinde titanyum dioksit nanopartiküllerinin küresel yapıda olduğu tespit edilmiştir. EDX analizi sonuçları ise titanyum dioksit nanopartiküllerinin oksitli yapıda olduğunu göstermektedir (Şekil 5). Diğer bitkisel kaynaklı nanopartikül sentez çalışmalarında bu yapıların genellikle küresel formda olduğunu göstermektedir (Santhoshkumar ve ark. 2014; Goutam ve ark. 2018; Zhang ve ark. 2018).

Tablo 1. Sentezlenmiş titanyum oksit nanopartiküllerin (TiO₂NP’ler) (mg mL⁻¹), titanyum klorid çözeltisi ve vankomisin, flukonazol, colistin antibiyotiklerinin S.aures, S. Albicans ve E. coli mikroorganizmları üzerindeki MIK değerlerlerinin karşılaştırılması.

<table>
<thead>
<tr>
<th>Organizma</th>
<th>TiO₂NP’ler (mg mL⁻¹)</th>
<th>Titanyum (II) klorid (mg mL⁻¹)</th>
<th>Antibiyotik (mg mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>0.34</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>ATCC 29213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>0.17</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.68</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>ATCC25922</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. SONUÇ

6. KAYNAKÇA

MERKEZ ANKARA PROJESİ VE EKOLOJİK KENTSEL TASARIM
CENTRAL ANKARA PROJECT AND ECOLOGICAL URBAN DESIGN

Sümeyye AKBABA
Gazi Üniversitesi Şehir ve Bölge Planlama Ana Bilim Dalı smy.akb0@gmail.com
Prof. Dr. Özge Yağcılar ERCOŞKUN
Gazi Üniversitesi Şehir ve Bölge Planlama Ana Bilim Dalı, ozgeyal@gmail.com

ÖZET
Ekolojik planlama ve tasarım sosyal, ekonomik ve çevresel açıdan sürdürülebilir kentler için bir gerekliliktir. Doğal kaynakların kullanılırken verimlilik ve yararlığını geliştirilmesi, zararlı atıkların azaltılması, atıkların geri dönüşümü, toplu taşıma sistemlerinin geliştirilmesi, yenilenebilir enerji kaynaklarının etkin kullanılması, kentsel planlamada formun verimlilik ve yararlık eşikleri içinde oluşturulması ekolojik planlamaya temel oluşturabilecek kriterlerdir.

Bu bağlamda başta son dönem artış gösteren büyük projelerde; her boyutla sürdürülebilir ve insan ihtiyaçları ile uyumlu bir yaşam alanı tasarlamak temel amaçtır. Bu doğrultuda incelenmek üzere Ankara Yenimahalle ilçesi, İstasyon Mahallesinde bulunan özel konumu, millet bahçesi, tren gari gibi alanlara yakınlık ve prestijli bir bölge içerisinde bulunması nedeniyle Merkez Ankara Projesi seçilmiştir.

Bu çalışmada; Merkez Ankara Projesinin ekolojik kentsel tasarım ilkelerine göre, yer seçiminden ulaşımına, bina formlarından gölge durumlarına kadar, genelden özele bir değerlendirmesi yapılmaktadır.

Anahtar kelimeler: Ekolojik Tasarım, Merkez Ankara Projesi, Sürdürülebilirlik

ABSTRACT
Ecological planning and design is a requirement for socially, economically and environmentally sustainable cities. Improving efficiency and capability while using natural resources, reducing harmful wastes, recycling waste, developing public transportation systems, using efficient renewable energy resources, forming the form within the efficiency and threshold capability in urban planning are the criteria that can form the basis of ecological planning.

In this context; The main objective is to design a living space that is sustainable and compatible with human needs in all aspects especially in the recent projects. For this purpose, the Central Ankara Project was chosen for its location in the Yenimahalle district of Ankara, in the neighborhood of İstasyon, due to its proximity to areas such as the national garden, the railway station and its location in a prestigious area.

In this study; The Central Ankara Project, is evaluated according to the ecological urban design principles from general to specific, from site selection to transportation, from building forms to shadow analyzes.

Key words: Ecological Design, Central Ankara Project, Sustainability

Giriş
İnsanların, yaşam alanlarında gerçekleştirmiş olduğu bütün müdahaleler doğaya yapılan müdahalelerdir. Doğadaki dengenin bozulmasıyla gelişen ekolojik yaklaşımlı çözüm yolları planlama ve tasarım açısından bir zorunluluk oluşturmuştur.

Bu kapsamda sürdürülebilir yerleşimler; iklim ve topografiya verilerine saygı, kaynakların etkin kullanılması, çevreye duyarlı, yaya ve toplu-taşım odaklı ulaşım sisteminin hakim olduğu, güneş, rüzgar gibi alternatif enerjilerden faydalanan, doğru konumlandırılmış akıllı yapılarдан oluşur. Malzemeler genelde geri dönüşülebilir yapılı malzemelerdir. Bu yapılar çevreye karşı duyarlılığını

Giriş
İnsanların, yaşam alanlarında gerçekleştirmiş olduğu bütün müdahaleler doğaya yapılan müdahalelerdir. Doğadaki dengenin bozulmasıyla gelişen ekolojik yaklaşımlı çözüm yolları planlama ve tasarım açısından bir zorunluluk oluşturmuştur.

Bu kapsamda sürdürülebilir yerleşimler; iklim ve topografiya verilerine saygı, kaynakların etkin kullanılması, çevreye duyarlı, yaya ve toplu-taşım odaklı ulaşım sisteminin hakim olduğu, güneş, rüzgar gibi alternatif enerjilerden faydalanan, doğru konumlandırılmış akıllı yapılarдан oluşur. Malzemeler genelde geri dönüşülebilir yapılı malzemelerdir. Bu yapılar çevreye karşı duyarlılığınu
ortaya koyar, uzun dönemde daha kazançlı bir işletim sağlar ve sağlıklı bir yaşam alanı sunar (Ünal, 2014).

Amaç ve Kapsam
Bu çalışmanın amacı kent merkezlerindeki çok fonksiyonlu, karma kullanım alanlarından çevreye karşı ne kadar duyarlı olduğunu, yakın çevresi ile uyumlu olup olmadığını ve sağlıklı bir yaşam alanı sunup sunmadığını saptamaktır.

Hedef
Belirlenen amaç doğrultusunda alan çalışması olarak seçilen Merkez Ankara Projesini ekolojik açıdan çok ölçütlü değerlendirir. Her ölçütü kendi içerisinde incelemek ve bütün ile ilişkisini kurmak.

Yöntem

Ekolojik Tasarım İlkeleri

Wheeler ise kentleri çevresel, sosyal ve ekonomik olarak sürdürülebilir kılmanın yollarını 9 maddede açıklamıştır:

• Kompakt ve etkin arazi kullanımı,
• Daha az motorlu araç kullanımı, erişim kolaylığı,
• Etkin kayak kullanımını, daha az kirlilik ve atık,
• Doğal sistemlerin restorasyonu,
• Kaliteli birim ve yaşam çevrelerinin oluşturulması,
• Sağlıktı sosyal ekoloji,
• Sürdürülebilir ekonomi,
• Halk katılımının sağlanması,
• Yerel kültürün korunmasıdır.” (Wheeler, 2004)

Krusche, Gabriel ve Althaus ise ekolojik tasarım için gerekli kriterler için aşağıdaki gibi bir çerçeve çizmiştir (Tönük, 2001):

• Çevreye ve enerjiye akiçi bir şekilde yaklaşıp yapmanın konumunu, tasarımını, biçimini, mekanik düzen ve işlevsellinini, malzeme seçimi ve tesisatlarını, fonksiyonel peyzaj alanlarını tercih etmek,
• Enerjiyi ve sınırlı kaynak kullanımını, yapı inşa ve kullanım süreçinde en etkin şekilde planlamak ve yönetmek,
• Yenilenebilir enerji kaynaklarını akiçi şekilde kullanmak (güneş enerjisi, yağmur suyu, doğal ılimlendirmeye, peyzaj)
• Bölgedeki ekosistemi olabildiğince korumak, miktarını ve çeşitliliğini desteklemek, sağlıklı bir yaşam alanı yaratmak.

Proje Alanının Ekolojik Kentsel Tasarım Kriterlerine Göre Değerlendirilmesi

Konum

Ankara İli Yenimahalle İlçe Konumu:

Şekil 1: Ankara İli, Yenimahalle İlçesi Konumu, Google Earth

Merkez Ankara Proje Alan Konumu:

Şekil 2: Ada – parsel, (Yetkin, 2018)

Bölgede ulaşım toplu taşıma araçları (otobüs, minibüs, metro) vasıtasıyla sağlanmakta olup; bölge araç trafiğinin yoğunluğuna bağlı bir bölgedir. Taşıımımız çevresinde Büyükşehir Belediyesi, Ankara Üniversitesi, Anitkabir, Cumhurbaşkanlığı Külliyesi, Gençlik Parkı, 19 Mayıs Stadyumu, Ankara
Etiler Orduvevi, AnkaMALL Avm, TCDD Tren Garı, Ankara Arena Kapalı Spor Salonu yer almaktadır (Şekil 4, 5).

Proje, Ankara- Eskişehir Karayolu’na yaklaşık 20,0 km, Ankara Çevre Yolu’na yaklaşık 37 km, Ankara- Konya Karayolu’na yaklaşık 24 km mesafede yer almaktadır.

Tablo 1: Alan Bilgileri, (Yetkin, 2018)

<table>
<thead>
<tr>
<th>Proje Özellikleri</th>
<th>(Hektar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>İlçe Nüfusu (2018):</td>
<td>663.580</td>
</tr>
<tr>
<td>Ada / Parsel:</td>
<td>638,65</td>
</tr>
<tr>
<td>İnşaat Alanı:</td>
<td>1.213.374,88 m²</td>
</tr>
<tr>
<td>İmar Fonksiyonu:</td>
<td>Mia (Merkezi İş Alanı)</td>
</tr>
<tr>
<td>Önceki Fonksiyonu:</td>
<td>EGO Garajı</td>
</tr>
<tr>
<td>KAKS:</td>
<td>4,50</td>
</tr>
<tr>
<td>Hmax:</td>
<td>Serbest</td>
</tr>
<tr>
<td>İmar Fonksiyonu:</td>
<td>Mia (Merkezi İş Alanı)</td>
</tr>
<tr>
<td>Paiçılabilir Dükkan Alanı:</td>
<td>0.3</td>
</tr>
<tr>
<td>Toplam Satılıbilir Alan:</td>
<td>59.7</td>
</tr>
<tr>
<td>Toplam İnşaat Alanı:</td>
<td>121.3</td>
</tr>
</tbody>
</table>

TMMOB Şehir Planları Odası basın açıklamasında plan notlarında bahsedilen kullanım kararlarının MİA gibi tek bir kullanım altında birleştirilemeyeceğini, gelecek olan nüfusa yönelik sosyal ve teknik altyapı alanı ayrılmadığını, bölgenin altyapı dengesinin bozulacağını ve oluşacak olan trafik yüküne karşın bir öneri getirilmediğini vurgulamıştır. Planda emsal kapsamına alınmayan yapılaşma ile yılı ruhsatlarında verilen inşaat hakkının değeri %18,23 olduğu ve gerçek emsal değerinin 5,35 olduğunu belirtmiştir (Şekil 4, 5).

(TMMOB Şehir Planları Odası Ankara Şubesi, 2018)

Tablo 2: Proje Künyesi, Proje Tanıtım Kataloğu

<table>
<thead>
<tr>
<th>Proje İsmi</th>
<th>MERKEZ ANKARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsa Sahibi</td>
<td>EMLAK KONUT GYO A.Ş.</td>
</tr>
<tr>
<td>Yatırımcı</td>
<td>PASİFİK-ÇİFTAY ORTAKLIĞI</td>
</tr>
<tr>
<td>Mimari Proje</td>
<td>KPF NEW YORK</td>
</tr>
<tr>
<td>AVM Konsept Proje</td>
<td>DDG BALTIMORE</td>
</tr>
<tr>
<td>Mimari Uygulama Projeleri</td>
<td>A TASARIM, ACE MİMARLIK, YAZGAN MİMARLIK</td>
</tr>
<tr>
<td>Peyzaj Projesi</td>
<td>DS MİMARLIK</td>
</tr>
<tr>
<td>İç Mimari Proje (Konutlar)</td>
<td>BRIGITTE WEBER MİMARLIK</td>
</tr>
<tr>
<td>Cephe Danışmanı</td>
<td>WERNER SOBEK</td>
</tr>
<tr>
<td>Rüzgâr Danışmanı</td>
<td>RWDI</td>
</tr>
<tr>
<td>Otopark Danışmanı</td>
<td>2A GRUP</td>
</tr>
</tbody>
</table>

Proje Tanıtımı:
Proje pazarlama stratejileri arasında Millet Bahçesi’ne (1,7 milyon m²) tren garme yakınlığı gibi faktörler önemli yer tutmaktadır. Proje Millet Bahçesi’ne bir yaya köprüsü ile ulaşma imkanı vaat etmektedir. Alanın batısındaki 220 m uzunluğundaki 50 katlı iş kulesini Ankara’nın imar planında yer alan en yüksek gökdelen olarak tanımlamaktadır (Şekil 6, Tablo 3).
(Merkez Ankara Konut Projesi Tanıtım Kataloğu).

Yerleşim Planı

Tablo 3: Konut, Ofis, Mağaza sayısı, Proje Tanıtım Kataloğu

<table>
<thead>
<tr>
<th>Konut</th>
<th>1425</th>
<th>Mağaza</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofis</td>
<td>1500</td>
<td>Alışveriş Cad.</td>
<td>600m açık AVM</td>
</tr>
</tbody>
</table>

Proje alanındaki konut alanları aile konutları (5 blok) ve şehir süttleri olarak ikiye ayrılmaktadır. İki konut alanı birbirinden 600 metre uzaklıklardaki bir alışveriş caddesi ile ayrılmaktadır. Proje alanının batısında kamuya tahsis edilecek 3 blok ve bir ibadet alanı bulunmaktadır. Alanın doğusunda iş yerleri olarak kullanılabacak olan 3 kule tasarlanmıştır. İlk etapta kamu binaları, ikinci etapta konutlar, son olarak da ofis binaları inşa edilecektir. 10.000 – 15.000 kamu personeli 10.000 – 15.000 arası da konut alanlarında yaşayacak nüfus öngörülmektedir (Proje Satış Ofisi, 2019). Aile konutları 3+1, 4+1,
4,5+1, 5+1 ve 6+1 olarak tasarlanmıştır ve fiyatları 994 bin tl ile 1.782.000 tl arasında değişmektedir. Şehir süti konutları 1+1 ve 2+1 olarak tasarlanmıştır ve 625 bin tl ile 1.165.000 tl arasında değişmektedir (Proje Satış Ofisi, 2019). Daire büyüklüklerine göre değişen kapalı otoparklar bulunmaktadır. Ulaştırma başlığı altında detaylı olarak incelenmiştir (Şekil 6, Tablo 3).

Ekolojik Tasarım Kriterleri:
Krusche, Gabriel, Althaus ve Wheeler’in ekolojik tasarım kriterlerinden yola çıkılarak oluşturulan ana ve alt başlıklar aşağıdaki gibidir (Tablo 4). Kriterler seçilirken alan, proje, projenin vaat ettiğine dikkate alınmıştır. Merkez Ankara gibi kompakt, karma kullanımı, lüks konut projelerinin uzun vadede daha ekonomik işletim için, daha sağlıklı ve çevreye duyarlı bir yaşam alanı için ne gibi tasarım önlemleri aldığını ölçmek için aşağıdaki 10 kriter seçilmiştir.

Tablo 5: Seçilen Kriterler

<table>
<thead>
<tr>
<th>SEÇİLEN KRİTERLER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yer Seçimi</td>
<td>Eğim, Altyapı, Güneş yölenmesi, Rüzgâr, Yakın çevreye ilişki, Donati öğeleri</td>
</tr>
<tr>
<td>2. Enerji Etkin Bina Biçim ve Kabuğu</td>
<td>Enerjinin korunması, mekânın planlanması, akıllı cepheler, gün ışıği, akıllı sistemler, malzeme</td>
</tr>
<tr>
<td>3. Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı</td>
<td>Kentsel biçim, Etkin alan kullanımı, Yakın çevreye uyum, Geri dönüşümlü malzeme kullanımı, Gölege analizi, Engelsiz tasarım</td>
</tr>
<tr>
<td>4. Yağmur Suyu Kazanımı ve Etkin Kullanımı</td>
<td>Yağmur suyu kazanımı, Atık su yönetim sistemi, Binalarda tasarruflu tesisat ve teçhizat kullanımı</td>
</tr>
<tr>
<td>5. Yenilenebilir Enerji</td>
<td>Enerji tasarrufu, temiz enerji</td>
</tr>
<tr>
<td>6. Atık Yönetim Sistemi</td>
<td>Atıkların geri dönüştürülmesi</td>
</tr>
<tr>
<td>7. Yenilenebilir Peyzaj</td>
<td>Peyzaj deseni, yenilenebilir peyzaj</td>
</tr>
<tr>
<td>8. Sürdürülebilir Ulaşım</td>
<td>Ulaşım tasarımını (yaya bisiklet ağırlıklı tasarım), otopark, toplu taşım</td>
</tr>
<tr>
<td>9. Sosyal Tesisler</td>
<td>Kültürel sosyal tesislerin varlığı</td>
</tr>
<tr>
<td>10. Karma Gelir Grubu</td>
<td>Farklı gelir gruplarına hitap edebilme</td>
</tr>
</tbody>
</table>

Merkez Ankara Konut Proje Alanı’nın Ekolojik Tasarım Kriterlerine Göre Değerlendirilmesi

Her iklim bölgesi kendine özel ekolojik faktörleri barındırdığından, ekolojik tasarım kriterleri seçilirken proje alanı dikkate alınarak değerlendirme yapmıştır.

1. Yer Seçimi

Şekil 7: Binaların Yönelimi, Proje Tanıtım Kataloğu

Yapı yükseklikleri 17 kat (71m) ile 50 kat (220m) arasındadır. Yapılar arası mesafe 30m'dir. Alanda aile blokları ve şehir süitleri olmak üzere iki tür konut alanı tasarlanmıştır. Bu konut alanları 600m'lik alışveriş caddesi ile ayrılmaktadır. Alanın güneyinde bulunan aile blokları 31-41 kat aralığındadır, Şehir süitleri 17-31 kat aralığındadır (Şekil 8).

Şekil 8: Kat Yükseklikleri, Proje Satış Ofisi

Çatı alanları çok az olduğu için güneş paneli kullanımı çok etkili olmayacaktır. D blokta ısıtma giderlerinin yüksek olabileceği değerlendirilmiştir.

Yer Seçimi başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 5).
Tablo 6: Yer Seçimi

<table>
<thead>
<tr>
<th>Yer Seçimi</th>
<th>Daha Yüksek Anadolu Yönü</th>
<th>Güney ve Güney Doğu Yöntüsü</th>
<th>Altyapı</th>
<th>Güneş ve Rüzgardan Azami Yararlanacaksı Yerleşimin Yönlenmesi</th>
<th>Yakın Çevresiyle İlişki</th>
<th>Donatılar</th>
<th>Toplam</th>
<th>Başarı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eğim ve Yapı Yöntemlendirme</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>83.33%</td>
</tr>
<tr>
<td>Topografiya</td>
<td>Topografiyaya saygılı tasarım</td>
<td>Topografiyaya saygılı tasarım</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altyapı</td>
<td>Alınan altyapının tamamlanmış ve toplu taşım güzergahlarında yer alması</td>
<td>Alınan altyapının tamamlanmış ve toplu taşım güzergahlarında yer alması</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Güneş ve Rüzgardan Azami Yararlanacaksı Yerleşimin Yönlenmesi</td>
<td>Güneş ve Rüzgardan Azami Yararlanacaksı Yerleşimin Yönlenmesi</td>
<td>Güneş ve Rüzgardan Azami Yararlanacaksı Yerleşimin Yönlenmesi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakın Çevresiyle İlişki</td>
<td>Çevresindeki rekreatif alanlarla bütünleşme</td>
<td>Çevresindeki rekreatif alanlarla bütünleşme</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donatılar</td>
<td>KentSEL donatılara yakılmak</td>
<td>KentSEL donatılara yakılmak</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toplam</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>83.33%</td>
<td>83.33%</td>
<td>83.33%</td>
<td>83.33%</td>
<td>83.33%</td>
<td>83.33%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Enerji Etkin Bina Biçim ve Kabuğ

Aile konutları ile şehir süsleri denilen 1+1 ve 2+1 dairelerden oluşan şehir süsleri arasında 600 m’lik bir alışveriş caddesi oluşturulmuştur (Şekil 9, 10).

Şekil 9: 600m’lik Alışveriş Caddesi, Katalog

Şekil 10: 600m’lik Alışveriş Caddesi, Katalog

Şekil 11: Konut Bloklarının Çephesi, Proje Tanıtım Kataloğu
Süper kule olarak adlandırılan 50 katlı 220 m yüksekliğindeki ofis binası için proje tamamlanınca LEED sertifikası başvurusu yapılması planlanmaktadır. Bu sebeple güneş kırıcılar, doğal havalandırma, kat bahçeleri, standart üstü tesisat, yeşil teras, gri su arıtma sistemi gibi nitelikler bu iş kulesinde daha ön plandadır.

Bina Biçim ve Kabluğu başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 6).

<table>
<thead>
<tr>
<th>2. Enerji Etkin Bina Biçim ve Kabuğu</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enerjinin Kazanımı</td>
<td>Enerji kazanımı için elverişli yapısal form ve ısı performanslı yapı kabuğu dizayn 1</td>
</tr>
<tr>
<td>Kentsel Mekânın Planı</td>
<td>Konut alanları içerisindeki açık alanların bina cepheleye takip edilebilir bir kapalılık hissi ve bir iç yaya dolaşımı oluşturması 1</td>
</tr>
<tr>
<td>Akıllı Cepheler</td>
<td>Doğal havalandırma 1</td>
</tr>
<tr>
<td></td>
<td>Güneş kırıcılar 0</td>
</tr>
<tr>
<td>Gün Işığı</td>
<td>Gün ışığı etkin kullanmak 0</td>
</tr>
<tr>
<td>Akıllı Sistemler</td>
<td>Akıllı sistem altyapısı 0</td>
</tr>
<tr>
<td>İklim</td>
<td>Yapılarak iklimle dengeli tasarımın göz önüne alınması 0</td>
</tr>
<tr>
<td>Toplam</td>
<td>3</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>42.86%</td>
</tr>
</tbody>
</table>

3. Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı

Otopark alanlarının yaklaşık %80’nin yer altında olması görüntü kirliğine engel olmuştur. Yapılarak geri dönüşümlü malzemelerden yapılamamıştır. Isınmada; merkezi ve ayarlanabilen (ısı pay ölçer) olması enerji kayıplarına engel olacaktır. İç mekânlarda yangın detektörü ve tesisatının bulunması kullanıcının güvenliğini olumlu etkilemiştir. Asansörler, rampalar engelsiz tasarım için uygun tasarlanmıştır. LEED Sertifika (ABD yeşil sertifika sistemi) alımı planlanan iş kulesinde mevzuat standartlarının üstünde engelsiz tasarım uygulanacağı planlanmaktadır.

Şekil 12: 21 Haziran, Sabah (07:00)
Şekil 13: 21 Haziran, Öğlen (13:00)
Şekil 14: 21 Haziran, Akşam (19:00)

Şekil 15: 21 Aralık, (Sabah, 07:00)

Şekil 16: 21 Aralık, (Öğlen, 13:00)

Şekil 17: 21 Aralık, (Aksam, 16:00)
Şekil 18: 21 Mart, (Sabah, 07:00)
Şekil 19: 21 Mart, (Öğlen, 13:00)
Şekil 20: 21 Mart, (Akşam, 17:00)
Şekil 21: 23 Eylül, (Sabah, 07:00)
Şekil 22: 23 Eylül, (Öğlen, 13:00)
Yapılan gölge analizlerinde ortak alan olan 600m’lik açık AVM’nin neredeyse hiç güneş almadığı, aile konutlarının güney cepheleri dışında yaplarının birbirlerinin güneşlerini engellediği sonucuna varılmıştır.

Alan yakın çevresi ile ele alındığında;

Emsal 1: Gazi Mahallesinde, değerleme konusu taşınmaza kuş uçuşu yaklaşık 1,2 km mesafede yer alan, konut alanı, 3 kat yapışma koşulu 329 m², 5922 ada 15 parselde konumlu,

Emsal 2: Mebusevleri Mahallesinde, değerleme konusu taşınmaza kuş uçuşu yaklaşık 1,0 km mesafede yer alan, konut alanı, 4 kat yapılaşma koşulu 605 m², 4259 ada 12 parselde konumlu,

Emsal 3: Anıttepe Mahallesinde, değerleme konusu taşınmaza yakın mesafede yer alan, konut alanı, 4 kat yapılaşma koşulu 273 m².

Dolayısı ile Proje alanı 4.50 emsal değeri ile mevcut yapı çevreyle uyumlu değildir (Şekil 24).

Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 7).
Tablo 8: Mekânsal Yapının Planlama ve Tasarımı

<table>
<thead>
<tr>
<th>Mekânsal Yapının Planlama ve Tasarımı</th>
<th>Başarı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentsel Biçim</td>
<td>1</td>
</tr>
<tr>
<td>Etkin Alan Kullanımı</td>
<td>1</td>
</tr>
<tr>
<td>Çevreye Uyum</td>
<td>0</td>
</tr>
<tr>
<td>Malzeme Seçimi</td>
<td>0</td>
</tr>
<tr>
<td>Gölege Analizi</td>
<td>0</td>
</tr>
<tr>
<td>Engelsiz Tasarım</td>
<td>0</td>
</tr>
<tr>
<td>Toplam</td>
<td>3</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

4. Suyun Kazanımı ve Etkin Kullanımı

Suyun Kazanımı ve Etkin Kullanımı başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 8)

Tablo 9: Suyun Kazanımı ve Etkin Kullanımı

<table>
<thead>
<tr>
<th>Suyun Kazanımı ve Etkin Kullanımı</th>
<th>Başarı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yağmur Suyu Kazanımı</td>
<td>0</td>
</tr>
<tr>
<td>Atık Su Yönetim Sistemi</td>
<td>0</td>
</tr>
<tr>
<td>Yapı İçerisinde Tasarruflu Tesisat ve Teçhizat Kullanımı</td>
<td>0</td>
</tr>
<tr>
<td>Toplam</td>
<td>0</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

5. Yenilenebilir Enerji

Yenilenebilir Enerji başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 9)

Tablo 10: Yenilenebilir Enerji

<table>
<thead>
<tr>
<th>Yenilenebilir Enerji</th>
<th>Başarı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enerji Kullanımı</td>
<td>1</td>
</tr>
<tr>
<td>Yalıtım</td>
<td>1</td>
</tr>
<tr>
<td>Toplam</td>
<td>3</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>33.33%</td>
</tr>
</tbody>
</table>
6. Atık Yönetim Sistemi
Atıkların azaltılması ve atıkların başka bir üretim sürecinde ham madde olarak kullanımı anahtar kriterlerden biridir. Bu projede atıkların yönetimi (ayırıştırma, gezi kazanım) ile ilgili herhangi bir sistem bulunmamaktadır. A blok (kule) için sertifika alma planından dolayı düşünce aşamasında, diğer yapılar için ekonomik sebeplerden dolayı düşünce askıda kalmıştır (Görüşme, Proje Satış Ofisi).

Atık Yönetim Sistemi başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 10).

Tablo 11: Atık Geri Dönüşümü

<table>
<thead>
<tr>
<th>Atık Geri Dönüşümü</th>
<th>Başarı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atıkların azaltılması</td>
<td>0</td>
</tr>
<tr>
<td>Atık ayırıştırma</td>
<td>0</td>
</tr>
<tr>
<td>Atıkların geri kazanımı</td>
<td>0</td>
</tr>
<tr>
<td>Toplam</td>
<td>0</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

7. Yenebilir Peyzaj

Şekil 25: Yeşil Alanlar, Proje Tanıtım Kataloğu

Şekil 26: Yeşil Alanlar, Proje Tanıtım Kataloğu

Konut proje alanı ve Millet Bahçesi konumu şekildedeki gibidir (Şekil 28).

8. **Sürdürülebilir Ulaşım**

Tablo 13: Otopark Planı

<table>
<thead>
<tr>
<th>B1</th>
<th>İlk kat AVM'ye ait</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>Ortak alan (akşam 10'dan sonra AVM kapanınca ortak, öncesinde herkes kendi katında olmak zorunda)</td>
</tr>
<tr>
<td>B3</td>
<td>Yarısi aile konutlarının, diğer yarısı şehir süitlerinin</td>
</tr>
<tr>
<td>B4</td>
<td>Aile konutlarının kendi izi altında otoparkı</td>
</tr>
</tbody>
</table>

Tablo 14: Otopark Sayısı

<table>
<thead>
<tr>
<th></th>
<th>Otöpark Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+1, 5+1</td>
<td>2 otöpark alanı tahsis edilmiş</td>
</tr>
<tr>
<td>6+1</td>
<td>3 otöpark alanı tahsis edilmiş</td>
</tr>
<tr>
<td>2+1</td>
<td>1 ya da 2 otöpark alanı üzerinden hesaplanmış</td>
</tr>
<tr>
<td>1+1</td>
<td>Genelde ortak alan kullanımı</td>
</tr>
</tbody>
</table>

Sürdürülebilir Ulaşım başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 14).

Tablo 15: Sürdürülebilir Ulaşım

<table>
<thead>
<tr>
<th>8. Sürdürülebilir Ulaşım</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulaşım Tasarımı</td>
<td>Bütün kullanıcıları (yaya ve bisiklet ağırlıklı) kapsayan ulaşım deseni 0</td>
</tr>
<tr>
<td>Otopark</td>
<td>Daire başına düşen otöpark, otöparkın alan içinde görüntü kirliliği yapmadan çözüldümesi 1</td>
</tr>
<tr>
<td>Toplu Taşıma</td>
<td>Toplu taşım duraklarına yakınlık 1</td>
</tr>
<tr>
<td>Nüfus</td>
<td>Getirilecek nüfusun trafiğe yönelik bir çözüm/öneri 0</td>
</tr>
<tr>
<td>Toplam</td>
<td>2</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

9. Sosyal Tesisler
Proje, spor, sosyal ve dinlenme tesislerini kendi içerisinde çözüme getirdiği için Sürdürülebilir Ulaşım başlığı altında incelenen kriterleri açısından değerlendirilmiştir.

Tablo 16: Sosyal Tesisler

<table>
<thead>
<tr>
<th>9. Sosyal Tesisler</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sosyal ve Kültürel Tesislerin Varlığı</td>
<td>İnsan sağlığını olumlu etkileyecen sosyal (spor, dinlenme) tesislerinin sürdürülebilir mesafede olması (en fazla 15 dk) 1</td>
</tr>
<tr>
<td>Toplam</td>
<td>1</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

10. Karma Gelir Grubu
Bölge geçmişten bu yana konut ve yatırım amacıyla olup, orta ve üst gelir gruplar tarafından tercih edilmektedir. Merkez Ankara Konut Projesi de üst gelir grubuna hitap etmektedir (Şekil 29).
Karma Gelir Grubu başlığı altında incelenen kriterler aşağıdaki tabloda değerlendirilmiştir (Tablo 15).

Tablo 17: Karma Gelir Grubu

<table>
<thead>
<tr>
<th>10. Karma Gelir Grubu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karma Gelir Grubu</td>
</tr>
<tr>
<td>Farklı gelir gruplarına hitap edebilecek konut tasarım</td>
</tr>
<tr>
<td>Farklı gelir grupları için fiyatlandırma</td>
</tr>
<tr>
<td>Toplam</td>
</tr>
<tr>
<td>Başarı Yüzdesi</td>
</tr>
<tr>
<td>0.00%</td>
</tr>
</tbody>
</table>

Değerlendirme

Buna karşın:
- Güneş ve rüzgârdan maksimum fayda elde edilememesi,
- Ortak alanların rüzgâr ve gölgeye maruz kalması,
- Yapıların güneş almaması,
- Geri dönüştürulebilir malzeme kullanılmaması,
- Yanınebilir enerji kaynaklarından faydalanılamaması,
- Suyun kazanımı için bir çalışmanın bulunmaması,
- Bir arıkt yönetim sistemi olmaması,
- Yenebilir peyzaj tasarımı olmaması olumsuz olarak değerlendirilmiştir (Tablo 17).

Merkez Ankara Projesi seçilen ve ayrıntılı olarak incelenen 10 ana ve alt kriterleriyle beraber aşağıdaki tabloda değerlendirilmiştir (Tablo 17).

Tablo 18: Seçilen Kriterler ve Değerlendirme

<table>
<thead>
<tr>
<th>SEÇİLEN KРИЕTERLER</th>
<th>Maksimum Puan</th>
<th>Altın Puan</th>
<th>Toplam Başarılı Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Yer Seçimi</td>
<td>6</td>
<td>5</td>
<td>83.33%</td>
</tr>
<tr>
<td>2.Enerji Etkin Bina Biçimi ve Kabuğtu</td>
<td>7</td>
<td>3</td>
<td>42.86%</td>
</tr>
<tr>
<td>3.Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı</td>
<td>6</td>
<td>3</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

Şekil 29: Fiyat Tablosu, Proje Satış Ofisi
4. Yağmur Suyu Kazanımı ve Etkin Kullanımı
Yağmur suyu kazanımı, Atık su yönetim sistemi, Binalarda tasarım thesise ve teçhizat kullanımı
5. Yenilenebilir Enerji
Enerji tasarımını, temiz enerji
6. Atık Yönetim Sistemi
Atıkların geri dönüştürülmesi
7. Yenilenebilir Peyzaj
Peyzaj deseni, yenilenebilir peyzaj
8. Sürdürülebilir Ulaşım
Ulaşım tasarımı (yaya bisiklet ağırlıklı tasarım), otopark, toplu taşım
9. Sosyal Tesisler
Kültürel sosyal tesislerin varlığı
10. Karma Gelir Grubu
Farklı gelir gruplarına hitap edebilme

Toplam
37 16 43.24%

Merkez Ankara Proje Alanı seçilen kriterler ve alt başlıklarla birlikte incelenmiş, gerekli analizler yapılmış ve değerlendirilmiştir. Projenin değerlendirme ölçütine göre 19 kriterden alabileceği maksimum puan 37 iken 16 puan almış ve %43’lik bir başarı sağlanabilmiştir. %43’lik başarıyı (16 puanı) ağırlıklı olarak Yer Seçimi (%31.25), Enerji Etkin Bina Biçim ve Kabuğu (%31.25) ve Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı (%18,75) kriterlerinden almıştır (Tablo 18)

Tablo 19: Seçilen Kriterler ve Ağırlık Yüzdeleri

<table>
<thead>
<tr>
<th>SEÇİLEN KRİTERLER</th>
<th>Maximum Puan</th>
<th>Alınan Puan</th>
<th>Toplam Başarı Yüzdesi</th>
<th>Ağırlık Yüzdesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yer Seçimi</td>
<td>6</td>
<td>5</td>
<td>83.33%</td>
<td>31.25%</td>
</tr>
<tr>
<td>2. Enerji Etkin Bina Biçim ve Kabuğu</td>
<td>7</td>
<td>3</td>
<td>42.86%</td>
<td>18.75%</td>
</tr>
<tr>
<td>3. Mekânsal Yapının Ekolojik Tabanlı Planlama ve Tasarımı</td>
<td>6</td>
<td>3</td>
<td>50.00%</td>
<td>18.75%</td>
</tr>
<tr>
<td>4. Yağmur Suyu Kazanımı ve Etkin Kullanımı</td>
<td>3</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>5. Yenilenebilir Enerji</td>
<td>3</td>
<td>1</td>
<td>33.33%</td>
<td>6.25%</td>
</tr>
<tr>
<td>6. Atık Yönetim Sistemi</td>
<td>3</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>7. Yenilenebilir Peyzaj</td>
<td>2</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>8. Sürdürülebilir Ulaşım</td>
<td>4</td>
<td>2</td>
<td>50.00%</td>
<td>12.50%</td>
</tr>
<tr>
<td>9. Sosyal Tesisler</td>
<td>1</td>
<td>1</td>
<td>100.00%</td>
<td>6.25%</td>
</tr>
<tr>
<td>10. Karma Gelir Grubu</td>
<td>2</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Toplam</td>
<td>37</td>
<td>16</td>
<td>43.24%</td>
<td></td>
</tr>
</tbody>
</table>

Sonuç

oluşturmakta insan ölçüğinden çıkmaktadır. Yüksek yapılar ulaşım, altyapı ve otopark gibi yoğunlukları beraberinde getirmekte ve yaya erişilebilirliğini kısıtlamaktadır. Fakat iyi tasarlanmış mekan yaya için hareket üretir, kamusal alanlarıyla sosyal ilişkileri güçlendirir ve insan psikolojisini olumlu etkiler.

Üst gelir grubunu hedefleyen bu projelerde ödenen bedeller de oldukça yüksektir. Ödenen bu bedellere karşılık alternatif enerji çeşitlerinin, atık yönetim sisteminin ve geri dönüşüm uygulamalarının, yağmur suyunun, güneş ve rüzgârdan maksimum fayda elde edilecek şekilde tasarın ve planlanmanın, yenilenebilir peyzaj öğelerinin ve çevre dostu malzemelerin dâhil edilmesi uzun vadede daha ekonomik işletim sağlayacaktır. Daha sağlıklı ve kaynaklarını etkin kullanan yaşam alanları için bu kriterler desteklenmeli, uygulama projelerinde yer almalıdır.

KAYNAKÇA
15. Proje Şantiye Şefi, Görüşme: 15.04.2019
18. Mimar Sinan Üniversitesi, Prof. Dr. Salih Ofluoğlu, Görüşme: 28.04.2019
HARRAN OVASI SULU KOŞULLARINDA İKİNCİ ÜRÜN OLARAK YETİŞTiRİLEN İKİ MISIR ÇEŞİDİNE FARKLI AZoT DOZLARININ HASIL VE TANE VERİMİ İLE BAZI TARIMSAL KARAKTERLERE ETKİLERİ ÜZERiNE BİR ARaŞTiRMA

A RESEARCH ON THE EFFECT OF HERBAGE AND GRAIN YIELDS AND SOME AGRICULTURAL CHARACTERS TWO MAIZE CULTIVARS GROWN AT DIFFERENT NITROGEN LEVELS AS SECOND CROP UNDER IRRIGATED CONDITIONS OF HARRAN

Bebiye ÇELLİK
Harran Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Ana Bilim Dalı, beiyiye45@gmail.com

Gülşah BENGiSU
Harran Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü, gbengisu@hotmail.com (Sorumlu Yazar)

ÖZET

Anahtar Kelimeler: Mısır, Çeşit, Azot Dozu

ABSTRACT
This research was conducted as a split plot with three replication at the trial field of Harran in 2003 second cropping season. The objective of this study was to determine of grain herbage and grain yields and some agricultural characters two maize cultuvars grown at different nitrogen levels. The cultuvars were considered as main plots and five nitrogen doses were considered as subplots in this study. There were statisticaly significiant differences among different nitrogen doses applications. Nitrogen doses increased of herbage and grain yields with all of the examining caracters, but decreased yield on the higher nitrogen doses. 25 kg/da nitrogen dose was found to be the most applicable result in reletion to analysis.

Keywords: Maize, Cutivars, Nitrogen Level

Giriş
Ülkemiz hayvancılık yönünden büyük bir potansiyele sahip olmasına rağmen arzu edilen hayvansal üretim gerçekleştirilememektedir. Sorun yetiştiricilik yönünden ele alınıldığında, hayvanların yeterli düzeyde beslenmediği dikkat çekmektedir. Bölgenizdeki hayvan varlığının kaba yem gereksinimi; verim gücü oldukça düşmüş çayır-mera alanları (Seydoşoğlu ve ark. 2018; Seydoşoğlu ve Kökten, 2019), nadas alanları ve bitkisel üretim artıklarından sağlanmakdadır. Tarla tarımı açısından yem bitkileri yetiştiriciliği çok düşük düzeylerde olup ekili alanların sadece % 0.3’sünü kapsamaktadır (Anonymous, 1999). Hayvancılık sektörünün yem gereksinimini sağlamak için tarla tarımı açısından yem bitkileri yetiştiriciliğine mutlak surette ağırlık verilmelidir (Kökt en ve ark. 2018; Kökten ve ark. 2019)

Bu çalışmanın amacı; Harran ovası sulu koşullarında ikinci ürün olarak yetiştirilen iki mısır çeşidinde farklı azot dozlarının tane ve hasıl verimi ile bazı tarımsal karakterlere üzerine etkilerini saptamaktır.

Materyal ve Yöntem
Araştırımanda materyal olarak MAY tohumculuk firmasından temin edilen Bora ve Sele çeşitleri kullanılmıştır. Bora çeşidi orta erkeni, ikinci ürün tarımına uygun, beyaz sömekli, taze tüketim için uygun bir çeşittir. Sele çeşitini ikinci ürün, silaj ve tane üretimi için uygun, orta erkenci bir çeşittir.
Deneme yeri toprakların ana materyali kolluvial olup, kırmızımsı kahverengi derin toprak özelliğindedir. Yapılan analizler sonucunda deneme yeri topraklarının ağır bünyeli, tuzluğunu zorunlu, hafif alkali reaksiyonda, kireçli, organik madde yönünden fakir, fosforca yetersiz, potasyumca zengin durumda olduğu bulunmuştur (Dinç ve ark., 1988).

Araştırma, 2003 yılı ikinci ürün yetiştirme sezonunda Harran Üniversitesi Ziraat Fakültesi Araştırma ve uygulama alanında bölünmüş parseller deneme desenine göre üç tekrarlamalı olarak yürütülmüştür. Araştırmada ana parscellere çeşitler, alt parscellere ise azot dozları (0-10-20-30 ve 40 kg N/da) yerleştirilmiştir. Her bir alt parsel, 5 m uzunluğunda 6 ekim sırasından oluşmuştur. Ayrıca, etki karışımını önlemek için alt parsceller arasında iki sıra boş bırakılmış (yaklaşık 2.1 m) ve sedde yapılarak suyun komşu parscellere geçiş engellenmiştir. Sulama karık sulama yöntemine göre yapılır. Toprak hazırlanırken depreme alınan deneme alanı, buğday hasat edildikten sonra anız pulluyla işlenmiştir, kültivatör ve tapan çekilerek ekime hazır hale getirilmiştir.

Araştırmada yeşil ot ve tane verimi özellikleri ayrı ayrı incelenmiştir. Parsel başlarından 0.5 m’lik kısımlar ve kenarlardan birer sıra karen tesiri olarak çıkarıldıktan sonra, geriye kalan 4 sıranın, iki sırası hasıl verimi ve unsurları, iki sırası ise tane verimi ve unsurlarını gözlemesini için kullanılmıştır. Hasıl için hasat hamur olum döneminde, tane için hasat; kavuzlar kuruyup, taneler iyice sertleştiğinde yapılmıştır.

Araştırma sonunda elde edilen veriler; MSTA TC paket programı kullanılarak, bölünmüş parsceller deneme desenine göre varyans analizine tabi tutulmuş, ortalamalar arasındaki fark ise L.S.D (%5)’ye göre bulunmuştur.

Bulgular ve Tartışma

Kuru madde verimleri azot dozu artışça artış göstermiştir (Çizelge 1). En yüksek kuru madde verimi 30 kg/da azot dozundadır.
verimleri Bora çesidinde 20 kg/da, Sele çesidinde ise 30 kg/da azot dozunda elde edilmiştir.

Yaparak oranı yönünden çeşitler arasında önemli farklılıklar çıkmıştır. Çizelge I’de izlendiği gibi yaprak oranları azot dozlarından etkilenmemiştir. Çeşitler arasında yaprak oranını baskısından farklı vardır. Bora çesidi Sele çesidinden daha fazla yaprak oranına sahiptir.Azot dozu uygulamalarıyla bitiklerdeki yaprak oranının değişmemesinin nedeni; uygulamalar sonucu bitkide kitlesel bir büyümenin meydana gelmesinden kaynaklandığı belirtilmektedir (Sağlamtimur ve Yılmaz 1996).

<table>
<thead>
<tr>
<th>Çizelge 1. Araştırmaya ait bazı özellikleri</th>
<th>Bitki Boyu (cm)</th>
<th>Yaprak Oranı (%)</th>
<th>Sap Oranı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Açık Dozu</td>
<td>Çeşitler</td>
<td>Ortalama</td>
<td>Ortalama</td>
</tr>
<tr>
<td>0 kg/da</td>
<td>SEL</td>
<td>186.57</td>
<td>219.00</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>189.83</td>
<td>219.00</td>
<td>191.05 b</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>208.27</td>
<td>221.57</td>
<td>213.72 a</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>205.37</td>
<td>216.00</td>
<td>210.68 a</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>186.47</td>
<td>174.70</td>
<td>180.58 b</td>
</tr>
<tr>
<td>Ortalama</td>
<td>194.82</td>
<td>196.71</td>
<td>193.71</td>
</tr>
</tbody>
</table>

Yeşil Ot Verimi (kg/da)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Çeşitler</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>3043.47</td>
<td>3258.44</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>3766.47</td>
<td>3434.85</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>3836.95</td>
<td>4644.83</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>3288.95</td>
<td>3863.80</td>
</tr>
<tr>
<td>Ortalama</td>
<td>3695.35</td>
<td>3963.34</td>
</tr>
</tbody>
</table>

Kuru Madde Verimi (kg/da)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Çeşitler</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>830.53 g</td>
<td>950.87 f</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>1052.77 ef</td>
<td>1161.34 cd</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>1145.29 cde</td>
<td>1397.53 a</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>1239.63 bc</td>
<td>1300.12 ab</td>
</tr>
<tr>
<td>Ortalama</td>
<td>1081.79</td>
<td>1178.89</td>
</tr>
</tbody>
</table>

Yaprak Oranı (%)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Çeşitler</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>20.93</td>
<td>26.23</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>19.22</td>
<td>25.83</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>16.35</td>
<td>23.96</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>16.29</td>
<td>25.09</td>
</tr>
<tr>
<td>Ortalama</td>
<td>18.36</td>
<td>25.69</td>
</tr>
</tbody>
</table>

Sap Oranı (%)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Çeşitler</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>46.51</td>
<td>41.91</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>50.23</td>
<td>43.92</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>49.36</td>
<td>36.45</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>48.58</td>
<td>36.67</td>
</tr>
<tr>
<td>Ortalama</td>
<td>50.56</td>
<td>39.48</td>
</tr>
</tbody>
</table>

Sap oranında olduğu gibi, koçan ağırlığı yönünden çeşitler ve azot dozları arasında önemli farklılıklar ortaya çıkmış (Çizelge 1), azot dozları arasında üç farklı grup oluşmuştur (Çizelge 1). Çeşit ortalamaları bakımından Bora çesidi Sele çesidinden daha yüksek koçan oranına sahiptir. Elde edilen koçan oranları azot dozu uygulamalarına paralel bir değişim göstermemiştir. Bu durum azot dozu uygulamalarıyla bitiklerde kitlesel artışın meydana gelmesinden kaynaklanmaktadır (Sağlamtimur ve Yılmaz, 1996).
Çizelge 2. Araştırmda incelenen bazı özellikleri

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Koçan Oranı (%)</th>
<th>Çeşitler</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SEL</td>
<td>BORA</td>
</tr>
<tr>
<td>0 kg/da</td>
<td>33.36</td>
<td>31.55</td>
<td>32.46 b</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>24.66</td>
<td>30.24</td>
<td>27.45 c</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>34.13</td>
<td>39.53</td>
<td>36.83 a</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>35.07</td>
<td>38.62</td>
<td>36.85 a</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>28.83</td>
<td>34.17</td>
<td>31.50 b</td>
</tr>
<tr>
<td>Ortalama</td>
<td>31.21</td>
<td>34.82</td>
<td></td>
</tr>
</tbody>
</table>

Koçan Yüksekliği (cm)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Koçan Yüksekliği (cm)</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>75.97 de</td>
<td>74.20 e</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>75.50 de</td>
<td>75.50 b</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>87.23 bc</td>
<td>94.50 ab</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>85.57 bcd</td>
<td>98.33 a</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>77.57 cde</td>
<td>57.43 f</td>
</tr>
<tr>
<td>Ortalama</td>
<td>80.37</td>
<td>79.99</td>
</tr>
</tbody>
</table>

Koçan Boyu (mm)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Koçan Boyu (mm)</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>18.37 cd</td>
<td>18.07 d</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>18.87 cd</td>
<td>18.63 cd</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>20.70 b</td>
<td>24.27 a</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>21.60 b</td>
<td>25.10 a</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>19.90 bc</td>
<td>20.70 b</td>
</tr>
<tr>
<td>Ortalama</td>
<td>19.89</td>
<td>21.35</td>
</tr>
</tbody>
</table>

Koçan Ağırlığı (g)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Koçan Ağırlığı (g)</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>174.70</td>
<td>199.80</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>243.60</td>
<td>266.70</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>269.95</td>
<td>305.47</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>283.74</td>
<td>298.73</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>258.93</td>
<td>274.37</td>
</tr>
<tr>
<td>Ortalama</td>
<td>246.18</td>
<td>269.01</td>
</tr>
</tbody>
</table>

Tane Verimi (kg/da)

<table>
<thead>
<tr>
<th>Azot Dozu</th>
<th>Tane Verimi (kg/da)</th>
<th>Ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kg/da</td>
<td>605.57</td>
<td>569.62</td>
</tr>
<tr>
<td>10 kg/da</td>
<td>982.04</td>
<td>996.51</td>
</tr>
<tr>
<td>20 kg/da</td>
<td>1067.52</td>
<td>1194.74</td>
</tr>
<tr>
<td>30 kg/da</td>
<td>1113.40</td>
<td>1160.91</td>
</tr>
<tr>
<td>40 kg/da</td>
<td>1006.72</td>
<td>1071.87</td>
</tr>
<tr>
<td>Ortalama</td>
<td>955.05</td>
<td>998.73</td>
</tr>
</tbody>
</table>

Azot dozu arttırıkça tane verimi de artmıştır. Ancak çeşitler için farklı olmakla birlikte belli bir noktadan sonra artışların verimde düşüşlere neden olduğu bulunmuştur.

Sonuç
Harran Ovası suyu koşullarında ikinci ürün olarak yetiştirilen iki misir çeşitinde farklı azot dozlarının tane ve hasıl verimi ile bazı tarımsal karakterlere olan etkilerini SAPTAMAK amacıyla yapılan bu çalışma sonucunda; bölge için en uygun azot dozunun 25/da olduğu tespit edilmiştir. Daha yüksek
oranlarda uygulanan azotlu gübrenin verimde önemli düşüşlere neden olduğunu saptanmıştır. Ayrıca yüksek dozlarda kullanılan gübrelerin çevresi kirilmesine ve dolaysıyla insan ve hayvan sağlığı açısından büyük bir tehdit oluşturduğu ve üreticiye büyük maddi yük getirdiği bilinmektedir. Bu nedenle; bitkisel üretim temel hedefi olan maksimum gelire ulaşılabilme için verimliliği arttıracı uygulamaların doğru kullanılması gerekmektedir.

Açıklama
Bu çalışma, ilk yazının yüksek lisans tezinden üretilmiştir.

Kaynaklar
Parasad, K.: Sing, P. 1990. Response of Promising Rainfed Maize Varieties Tonitrogen Application in North-Western Himalagan Region Indian Journal of Agricultural Sciences 60 (7) 475-477 (En 2 ref) India
SÜRÜDÜRÜLEBİLİR YEREL GELİŞMEDE YAVAŞ ŞEHİR HAREKETİ:
ANKARA – GÜDÜL ÖRNEĞİ
THE MOVEMENT OF CITTASLOW IN SUSTAINABLE LOCAL DEVELOPMENT:
THE CASE OF ANKARA - GÜDÜL

Ali Burak ASLAN
Y. Şehir Plancısı, Gazi Üniversitesi Fen Bilimleri Enstitüsü Şehir ve Bölge Planlama ABD, Ankara,
aliburakaslan@gmail.com

Prof. Dr. Özge Yalçıner ERCOŞKUN
Gazi Üniversitesi Fen Bilimleri Enstitüsü Şehir ve Bölge Planlama ABD, Ankara,
ozgeyal@gmail.com

ÖZET

ABSTRACT
With the effect of globalization, cities are moving towards rapid growth and homogenization. In parallel with this rapid growth and homogenization, cities have become a center of consumption. This situation started to change the habits of the people living in the city. In 1986, the protest by the group led by Carlo Petrini during the opening of a Fast Food shop in Rome was the first reaction to this rapid life. In 1989, “Slow Food Association” was established in Barolo, Italy. After that, the movement has taken an urban dimension by growing, and in 1999, the “Cittaslow” was founded in Italy under the leadership of Paolo Saturnini, past Mayor of Greve in Chianti. This movement, which aims to increase the quality of life by preserving and maintaining the local values of the cities, has reached 252 members in 30 countries in 2019. In 2009, Seferihisar in İzmir, became Turkey's first Cittaslow title. Today, there are 17 cities participating in the Cittaslow. In addition to these cities, there are also cities that apply for candidacy to join this union. This study deals with the Güdül District of Ankara, which applied for the candidacy to join Cittaslow. The application of Güdül's candidacy has been examined within the framework of 72 criteria in the Cittaslow Regulation. Güdül's current status was determined and the suitability of the city for the candidacy was evaluated. It is aimed to determine the steps to be taken for membership of the Cittaslow Association. In this context, the projects carried out and planned to be done in Güdül during the candidacy process were examined and the value that these
projects added to the city was determined. In the conclusion part, Strategies for similar candidate cities such as Güdül have been determined.

Keywords: Cittaslow, Sustainability, Local Development, Güdül – Ankara.

1. **GİRİŞ**

2. YAVAŞ ŞEHİR BİRLİĞİNİN TARIHSEL GELİŞİMİ, AMACI, ÇALIŞMA ŞEKLI VE KRİTERLERİ

1999 yılında ise İtalya’dan Greve in Chianti’nin eski belediye başkanı Paolo Saturnini’nin çağrısıyla bir araya gelen 30 kentin yayınlanan ilk bildiride Yavaş Şehr kavramı çerçevesinde bir ağ oluşturulmuştur. Yavaş Şehr hareketi, küreselleşmenin ortaya çıkardığı homojen mekânlardan biri olmak istemeyen, yerel kimliğini ve özelliklerini koruyarak, dünya sahnesinde yer almak isteyen kasabaların ve şehirlerin katıldığı bir birlik olarak ortaya çıkmıştır. İlk yıllarında İtalya’dan genişleyen Yavaş Şehr Birliği 2019 yılı Haziran ayı itibariyle 30 ülkede toplam 252 kente yayılmıştır. 84 şehir ile Birliğin kuruluş yeri olan İtalya en fazla yavaş şehre sahiptir. İtalya’nın ardından Avrupa ülkeleri olan Polonya 30 şehirle, Almanya 20 şehirle ve Türkiye 17 şehirle sıralanmaktadır. Avrupa kıtadaki yer alan ülkelerde Güney Kore’den 16 şehir ve Çin’den 12 şehir bu unvana sahiptir (http://www.cittaslow.org). İzmir’in Seferihisar İlçe Türkiye’den birliğe katılan ilk şehirdir. 2009 yılında birliğe katılan Seferihisar ile birlikte ikinci katılan şehir Alat (Bitlis), Akyaka (Muğla), Eğirdir (Isparta), Gerze (Sinop), Göcek (Çanakkale), Göynük (Bolu), Hafızi (Şanlurfa), Köyceğiz (Muğla), Mudurnu (Bolu), Perşembe (Ordu), Şavşat (Artvin), Taraklı (Şanlıurfa), Vize (Kırklareli), Yalova (Ordu) ve Yenipazar (Aydın) Türkiye’den Yavaş Şehr unvanına sahiptir.

Yavaş Şehr Birliğine katılma için aday kentin nüfusunun 50.000’in altında olması zorunludur. Bu koşul sağlandıktan sonra yapılması gereken, Uluslararası Yavaş Şehr Başkanlığının henüz kentin birliğe üyeliği zinciri ayakta bir başvuru mektubunun sunulması olacaktır (Sezgin ve Ünüvar, 2010). Başvuru mektubuya ilgili incelemlerin ardından değerlendirmesi sonucu, gerekçelerle birlikte şehr bildirilir. Olumlu olması durumunda, Yavaş Şehr Koordinasyonu şehr adaylık değerlendirme ziyaretinde bulunur ve rapor düzenler. Bu raporanın da olumlu olması durumunda, aday kentin birliğe katılmak için yeterli kriterler sağlanması durumunda, bir sertifika ile birlikte 'Salyangoz Bayrağı' dalgalanır.
3. YÖNTEM

4. GÜDÜL’DE YAPILAN ÇALIŞMALAR VE GÜDÜL’ÜN YAVAŞ ŞEHİR KRİTERLERİ ÇERÇEVEŞİNDE DEĞERLENDİRİLMESİ
1 Eylül 1957 tarihinde 7030 sayılı Kanun ile ilçe olan Güdül, Ankara’nın 90 km. kuzeybatısında yer almaktadır. Komşuları Ayaş’a 32 km, Beypazarı’na 33 km, Çamlıdere ve Kızılcahamam’a ise 60’ar km. mesafededir. Kentin yüzölçümü 419 km² olup, nüfusu 10.074 kişidir. Arazi yapısı oldukça dağlık olan ilçeden Sakarya Nehri’nin kolları Kirmir, Suvari ve İlhan Çayları geçmektedir. Güdül’un tarihi M.Ö. 3.000 – 3.500 yıllarına kadar uzanan mağaraların bulunduğu ve hitit uygarlığının çıkıntıları, mağaraların içerisindeki hitit uygarlığına ait olduğu sanılmaktadır. Bu mağaralar ile birlikte Sorgun Yaylası civarındaki orman alanları ve Sorgun Gölet’i de ilçenin doğal zenginliklerinden olup, turist çekme noktaları arasında yer almaktadır.

Sanatkârlara Dair Politikalar” başlığı altında yer alan kriterleri yerine getirmek için önemli bir potansiyele sahiptir.

Şekil 2: a) Uydu görüntüsü (Google Maps, 2019) b) Güdül arazi kullanımı (Gazi Üniversitesi-Şehir ve Bölge Planlama Bölümü 2.sınıf şehircilik projesi)

Şekil 3: Güdül Konakları (Güdül Yavaş Şehir Başvuru Dosyası, 2019: 32).

Yukarıda bahsedilen özelliklerden de anlaşılacağı üzere, Yavaş Şehir Birliği’ne adaylık başvurusunda bulunan Güdül, 10.074 kişi olan nüfusuyla, tarihsel süreç içerisinde birçok medeniyete ev sahipliği yapmasıyla, tarihi mağaraları ve yaylaları ile turist çekim destinasyonlarına sahip olmasıyla, sürdürülebilir tarım ürünleri yetiştirmesiyle Yavaş Şehir unvanını alabilmek için önemli bir potansiyele sahiptir. Bu doğrultuda, Güdül’ün Yavaş Şehir Birliği’ne üyelik sürecinde hangi kriterleri sağlayıp hangilerini sağlayamadığı Güdül’deki yerel yöneticilerle, kamu kurum ve kuruluşları yetkilileri ile hazırlanan görüşme formları üzerinden değerlendirilmişti.

“Yavaş Şehir Başvuru Dosyası” da incelenmiş olup; elde edilen veriler, alanda yapılan gözlem ve incelemelerle birleştirilerek Güdül’ün Yavaş Şehir potansiyeli belirlenmeye çalışılmıştır. Tüm bu veriler sonucunda Yavaş Şehir Tüzüğü’nde yer alan kriterler tam (+), yarım (┴) veya eksik (-) olarak değerlendirilmiş ve tablolar oluşturulmuştur. Tablolarında yer alan kriterlerin sonunda bulunan asteriks (*) işaretleri o kriterin zorunlu kriter olduğunu, iki asteriks (**) ise perspektifi kriterleri göstermektedir. Buna ek olarak, Yavaş Şehir kriterleri ile doğrudan veya dolaylı olarak ilişkilidi Güdül’de yapılan veya yapılması planlanan projeler kriter başlıkları altında değerlendirilmiştir.

4.1. Çevre Politikaları Kapsamında Yapılanların Değerlendirilmesi

Şekil 5: a) Gariçe Mahallesindeki içme suyu deposu b) Güdül Belediyesi tarafından dağıtılan atık pil toplama kutuları (Güdül Yavaş Şehir Başvuru Dosyası, 2019: 5).

Şekil 6: a) Çok amaçlı bina inşası, b) Çarşı içi yol zeminleri ve kaldırımlar sökülerek yerine Arnavut taşı doşeme çalışmaları

Çevre politikaları başlığı altında yer alan 12 kriterden 7 tanesinin (1, 2, 7, 8, 10, 11 ve 12. kriterler) yerine getirildiği; 4 adet (4, 5, 6 ve 9. kriterler) kriterin kısmen sağlanabildiği tespit edilmiştir. Güdül’de kanalizasyon altyapısı bulunmayan hiçbir mahallenin kalmamış olması, geri dönüşüm kapsamında kent sakinlerin bilinçlendirilmesi, yenilebilir enerji kaynaklarının kullanımına yönelik uygulamaları gidilmesi adaylık sürecinin kente kazandırduğu önemli başlıklardır.

Tablo 1: Çevre Politikaları Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>1. Çevre Politikaları</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Hava temizliğinin yasa tarafından belirtilen parametrelerde olduğuğunun belgelenmesi *</td>
<td>+</td>
</tr>
<tr>
<td>1.2. Su temizliğinin yasa tarafından belirtilen parametrelerde olduğuğunun belgelenmesi *</td>
<td>+</td>
</tr>
<tr>
<td>1.3. Halkın içme suyu tüketiminin ulusal ortalamayla karşılaştırılması</td>
<td>-</td>
</tr>
<tr>
<td>1.4. Kentsel atıkların ayrılarak toplanması *</td>
<td>↓</td>
</tr>
<tr>
<td>1.5. Endüstriyel ve evsel kompostlamının desteklenmesi</td>
<td>↓</td>
</tr>
<tr>
<td>1.6. Kentsel ve toplu kanalizasyon için atık su arıtma tesisinin bulunması *</td>
<td>↓</td>
</tr>
<tr>
<td>1.7. Kamunun yenilebilir enerji kaynaklarından enerji üretimi</td>
<td>+</td>
</tr>
<tr>
<td>1.8. Görsel kirliliğin ve trafik gürültüsünün azaltılması</td>
<td>↓</td>
</tr>
<tr>
<td>1.9. Kamusal ışık kirliliğinin azaltılması *</td>
<td>+</td>
</tr>
<tr>
<td>1.10. Hane başına düşen elektrik enerjisi tüketimi</td>
<td>+</td>
</tr>
<tr>
<td>1.12. Biyoçeşitlilik korunması</td>
<td>+</td>
</tr>
</tbody>
</table>

Not: Tablolararda yer alan kriterlerin sonunda bulunan asteriks (*) işareti o kriterin zorunlu kriter olduğunu, iki asteriks (**) ise perspektifi kriterleri göstermektedir.
4.2. Altyapı Politikaları Kapsamında Yapılanların Değerlendirilmesi

Mevcutta Güdül’de bisiklet yolu bulunmamaktadır. Bu nedenle Güdül Çevre Yolu Projesinin yanı sıra 40 km. bisiklet yolunu projelendirdi; proje dahilinde bisiklet park yerlerinin de planlanmıştır (Educa Life Eğitim, Danışmanlık Proje Ltd. Şti., 2019). Ayrıca, halk ve esnaf tarafından doğa dostu mini elektrikli bisiklet kullanımını İlçe genelinde başlatılmıştır.

Bu başlık altında yer alan toplam 9 kriterden çoğunun (1, 2, 3, 4 ve 8. kriterler) Güdül tarafından sağlanamadığı tespit edilmiştir. 7 başlık altında en çok eksikliğin bulunduğu başlık altyapı politikalarıdır. Adaylık süreci ile bu eksik olan kriterlerin tamamlanmasına yönelik gerçekçi ve ciddi adımların olabildiğince erken atılması gerekmektedir. Özellikle bisiklet kullanımların yeniden hayata geçirilmesi kentin sürdürülebilir ve çevreci bir ulaşım politikası yakalayacağını için de önemli bir adım olacaktır.

Tablo 2: Altyapı Politikaları Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>2. Altyapı Politikaları</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Kamu binalarına bağlı verimli bisiklet yolları</td>
<td>-</td>
</tr>
<tr>
<td>2.2. Mevcut bisiklet yollarının araç yollarıyla kilometre üzerinden karşılaştırılması *</td>
<td>-</td>
</tr>
<tr>
<td>2.3. Metro ve otobüs durakları gibi aktarma merkezlerinde bisiklet park yerleri</td>
<td>-</td>
</tr>
<tr>
<td>2.4. Özel taşıt kullanıma alternatif olarak eko ulaşım planlanması *</td>
<td>-</td>
</tr>
<tr>
<td>2.5. Engellilerin verimli mimari engelleri kaldırılması *</td>
<td>-</td>
</tr>
<tr>
<td>2.6. Aile hayatı ve hamile kadınlar için girişimler *</td>
<td>-</td>
</tr>
<tr>
<td>2.7. Sağlık hizmetlerine onaylanmış ulaşılabilirlik</td>
<td>+</td>
</tr>
<tr>
<td>2.8. Kent merkezlerinde malların sürdürülebilir dağıtımı</td>
<td>-</td>
</tr>
<tr>
<td>2.9. Şehir dışında çalışan şehir sakinlerinin oranı *</td>
<td>+</td>
</tr>
</tbody>
</table>

4.3. Kentsel Yaşam Kalitesi Politikaları Kapsamında Yapılanların Değerlendirilmesi

Bu başlık altında yer alan politikalar kapsamında Belediye yetkilileri ile yapılan görüşmeler sonucunda, İlçe restorasyonu tamamlanmış 130’a yakın yapıların bulunduğu; 360 adet yapıın ise restore edilme sürecinde olduğu; sit alanı dışında kalnan Tarihi Merkez Çarşı Cami restorasyonuna başlanlığı; ayrıca, merkezdeki tüm binaların birbiriley uyumlu olması amacıyla yeni yapılacak binalara kahverengi ve beyaz boya kullanımına zorunluluk getirildiği belirtilmiştir.

* Ayarlanmamış
+ Açılmış
- Onaylanmış

Şekil 7: a) Güdül Kent Müzesi b) Leblebiciler Sokağı
3. başlık altında yer alan meyve ağaçları kullanılarak sosyal yeşil alanların oluşturulması kapsamında; ilçe genelinde 500 adet ıhlamur ile 5.000 adet hünnap, 20.000 adet çam ağaç ve 55.000 adet akasya ağaçının dikişimi gerçekleştirilmiştir. 3. Başlık altında zorunlu kriterlerden olan “Yerel ürünlerin ticarileşmesi için alanların oluşturulması” için yerel ürünlerin tanıtıldığı http://gudulticari.net/ isimli web sitesi kurulmuştur (Güdül Yavaş Şehir Başvuru Dosyası, 2019: 33).

Sonuç olarak bu başlık altında kriterlerin çözümlendiği ve projeler geliştirildiği, başlık altında yer alan 17 kriterden sadece 2 tanesi (13 ve 17. kriterler) için herhangi bir projenin bulunmadığı anlaşmaktadır. Özellikle kentte yer alan birçok tescilli yapıların restorasyon işlemlerinin tamamlanması veya devam etmekte, yerel atölyelerin ve zanaatkärlerin korunması ve doğal/yerel ürün üretimini teşvik edilmesi kentin yerel ekonomik gelişimi açısından ciddi adımlardır.

Tablo 3: Kentsel Yaşam Kalitesi Politikaları Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>3. Kentsel Yaşam Kalitesi Politikaları</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Kentin direnci için planlama **</td>
<td>┴</td>
</tr>
<tr>
<td>3.2. Kente ait değerlerin iyileştirilmesi, kent merkezlerinin ve kamu binalarının değerlerinin artırılması için programlar *</td>
<td>┴</td>
</tr>
<tr>
<td>3.3. Verimli bitkiler ve meyve ağaçları kullanılarak sosyal yeşil alanların iyileştirilmesi ve/veya oluşturulması **</td>
<td>+</td>
</tr>
<tr>
<td>3.4. Kentsel yaşanabilirliğin artırılması</td>
<td>┴</td>
</tr>
<tr>
<td>3.5. Marşinal alanların tekrar değerlendirilip kullanılması *</td>
<td>+</td>
</tr>
<tr>
<td>3.6. Vatandaşlara ve turistlere yönelik interaktif hizmetlerin gelişilmesinde bilgi ve iletişim teknolojilerinden faydalanılması *</td>
<td>┴</td>
</tr>
<tr>
<td>3.7. Sürekli ve düzenli bir hizmet massa oluşturulması *</td>
<td>┴</td>
</tr>
<tr>
<td>3.8. Kentin internet ağına sahip olması *</td>
<td>+</td>
</tr>
<tr>
<td>3.9. Kentsel yaşanabilirliğin artırılması *</td>
<td>┴</td>
</tr>
<tr>
<td>3.10. Sosyal altyapının değerlendirilmesi **</td>
<td>┴</td>
</tr>
<tr>
<td>3.11. Kentin direnci için planlama **</td>
<td>┴</td>
</tr>
<tr>
<td>3.12. Sosyal altyapının değerlendirilmesi **</td>
<td>┴</td>
</tr>
<tr>
<td>3.13. Kentin direnci için planlama **</td>
<td>┴</td>
</tr>
<tr>
<td>3.14. Kentin direnci için planlama **</td>
<td>┴</td>
</tr>
<tr>
<td>3.15. Yerel ürünlerin ticarileşmesi için alanların oluşturulması *</td>
<td>+</td>
</tr>
<tr>
<td>3.16. Atölyelerin korunması ve değeri artırılması</td>
<td>+</td>
</tr>
<tr>
<td>3.17. Yeşil alanlarda kullanılan beton miktarı **</td>
<td>┴</td>
</tr>
</tbody>
</table>

4.4. Tarımsal, Turistik, Esnaf ve Sanatkârlara Dair Politikalar Kapsamında Yapılanların Değerlendirilmesi

Saha çalışması yapılan dönemde, yerel ürünlerin üretimi ve pazarlanması amacıyla İlçe kadınların potansiyelinden yararlanmak için “Kadınlar Kooperatifi” kulutulma aşamasında wası. Güdül Halk Eğitim Merkezi Müdürü İlçe kadınlarına yönelik “kooperatif silah ve girişimcilik”, “sahipliği giyis filmi ve hygienije” eğitimleri ile “asılık ve açılık yardımcıları” ve “mutlak çalışma yeteneği” kurslarının verildiği belirtilmiştir. Ayrıca, kadınların, Suzen ve oyaya yönelik üretim...
amaçlı kurslar (Şekil 8.a) açılmıştır; üretilen ürünlerin hepsine, yöreye özgü 100 yılı aşkın süredir evlerde kullanılan bir motif olan “Güdül Gözü” dikildiğini belirtmiştir.

“Kamuya ait restoranlarda (okul kantinleri, aş evleri vb.) yerel, mümkünse organik ürünlerin kullanılması” zorunlu kriteri kapsamında ilçe merkezinde yer alan tarihi binalardan biri restore edilerek, Güdül Belediyesi tarafından işletilen, yöresel yemeklerin yapıldığı ve organik ürünlerin kullanıldığı “Güdül Sofrası Yöresel Ürünler Mutfağı” (Şekil 8.b) olarak lokantaya çevrilmiştir. Okul kantlinin, yatılı okulların yemekhanelerinde benzer uygulamaları gidildiği Belediye çalışanlarına belirtilmiştir.

Şekil 9: Sorgun Yaylasisı ve teneke evler (Güdül Yavaş Şehir Başvuru Dosyası, 2019: 27)

Bu başlık altında yer alan kriterlerin yarısının tam olarak sağlandığı (2, 3, 5, 7 ve 9. kriterler) tespit edilmiştir. Özellikle tarımda GDO kullanımının yasaklanması, ata tohumlarının kullanımının ve organik tarıma yönelik uygulamaların teşvik edilmesi adaylık sürecinde kentin tarsmsal faaliyetlerinin sağlıklı bir çerçevede yapılması yönelik ciddi katkı sağlamıştır. Zorunlu kriterlerden biri olan otele kapasitelerinin artırılması konusunu Güdül’ün en büyük eksikliklerinin başında gelmektedir. Bunun çözümüne yönelik gerçekçi projelerin ivedilikle hayata geçirilmesi démarche görmektedir.
Tablo 4: Tarımsal, Turistik, Esnaf ve Sanatkârlara Dair Politikalar Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>4. Tarımsal, Turistik, Esnaf ve Sanatkârlara Dair Politikalar</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Agroekolojinin geliştirilmesi **</td>
<td>-</td>
</tr>
<tr>
<td>4.2. El yapımı ve etiketi veya markalı esnaf/sanatkâr ürünlerinin korunması *</td>
<td>+</td>
</tr>
<tr>
<td>4.3. Geleneksel iş tekniklerinin ve zanaatların değerinin artırılması *</td>
<td>+</td>
</tr>
<tr>
<td>4.4. Kursal bölgede yaşayanların hizmetlere erişimini artırarak kursal bölgelerin değerini artırma *</td>
<td>-</td>
</tr>
<tr>
<td>4.5. Kamuya ait restoranlarda (okul kantinleri, aş evleri vb.) yerel, mümkünse organik ürünlerin kullanılması *</td>
<td>+</td>
</tr>
<tr>
<td>4.6. El yapımı ve etiketi veya markalı esnaf/sanatkâr ürünlerinin korunması ve değerinin artırılması *</td>
<td>+</td>
</tr>
<tr>
<td>4.7. Yerel ve geleneksel kültürel etkinliklerin korunması ve değerinin artırılması *</td>
<td>+</td>
</tr>
<tr>
<td>4.8. Otel kapasitelerin artırılması *</td>
<td>-</td>
</tr>
<tr>
<td>4.9. Tarmda GDO kullanımının yaygınlanması</td>
<td>+</td>
</tr>
<tr>
<td>4.10. Önceden tarm için kullanılan alanların kullanımını hakkında imar planları için yeni fikirlerin varlığı</td>
<td>-</td>
</tr>
</tbody>
</table>

4.5. Misafirperverlik, Farkındalık ve Eğitim İçin Planlar Kapsamında Yapılanların Değerlendirilmesi

Bu başlık altında öncelikle halkın Yavaş Şehir felsefesini kavramasına yönelik çalışmaların yapıldığı yapılan görüşmelerde analiz edilmiştir. Başta bu felsefeye kara çıkan yerel halkın görüşlerinin yapılan eğitimler, yavaş şehir unvanını sahip diğer kentlere yapılan teknik geziler ile değiştiği halka yapılan görüşmelerden fark edilmiştir.

Ayrıca, 33 esnafa, 24 muhtara, 16 kamu çalışanına ve 15 öğretmene “Halkla İlişkiler, Kaliteli Ağırlama ve Misafirperverlik, Turizm İşletmelerinde İletişim” konularını içeren dördür saatlik Yavaş Şehir eğitimleri verildiği; Güdül’de ikamet edenlere yönelik Yavaş Şehir ile ilgili olarak 90 kişinin katıldığı anket yapıldığı; farkındalık sağlanması açısından kent sakinlerinin, resmi kurum ve kuruluşların, sivil toplum kuruluşlarının ve esnafın; broşürler ve yeni kurulan “http://www.sakinsehirgudul.net” web sitesi ile bilgilendirilmeye çalışıldığı belirtilmiştir (Educa Life Eğitim, Danışmanlık Proje Ltd. Şti. 2019).

Şekil 10: Yavaş Şehir Tanıtım Eğitimleri (Güdül Yavaş Şehir Bağışlur Dosyası, 2019: 50-51).

Bu başlık altında yer alan kriterlerin tamamıyla ilgili plan ve projenin bulunduğunu; tüm kamu çalışanlarının, dernek ve vakıfların, kent sakinlerinin ve esnafın Yavaş Şehir hakkında broşürler, toplantılar ve eğitimler ile bilgilendirilik farkındalıklarının artırıldığı tespit edilmiştir.
Tablo 5: Misafirperverlik, Farkındalık ve Eğitim İçin Planlar Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>5.</th>
<th>Misafirperverlik, Farkındalık ve Eğitim İçin Planlar</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.</td>
<td>İyi karşılama *</td>
<td>↓</td>
</tr>
<tr>
<td>5.2.</td>
<td>Esnafın ve operatörlerin farkındalıklarını artırmak *</td>
<td>↓</td>
</tr>
<tr>
<td>5.3.</td>
<td>Yavaşegrityaların mevcut olması</td>
<td>↓</td>
</tr>
<tr>
<td>5.4.</td>
<td>Önemli yönetimsel kararlara tabi tutma.setScale sürecesi sağlayacak aktif tekniklerin benimsenmesi</td>
<td>↓</td>
</tr>
<tr>
<td>5.5.</td>
<td>Eğitimciler, yöneticiler ve çalışanların Cittaslow temaları hakkında sürekli eğitim görmesi **</td>
<td>↓</td>
</tr>
<tr>
<td>5.6.</td>
<td>Sağlık eğitimleri +</td>
<td></td>
</tr>
<tr>
<td>5.7.</td>
<td>Yöre halkına Cittaslow’un anlamı hakkında sistematik ve kalıcı eğitim vermek *</td>
<td>+</td>
</tr>
<tr>
<td>5.8.</td>
<td>Cittaslow üzerine yerel yönetim ile çalışan derneklerin aktif varlığı</td>
<td>+</td>
</tr>
<tr>
<td>5.9.</td>
<td>Cittaslow kampanyalarının desteklenmesi *</td>
<td>+</td>
</tr>
<tr>
<td>5.10.</td>
<td>Cittaslow logosunun internet sayfasında ve antetli kağıt üzerinde kullanımı *</td>
<td>↓</td>
</tr>
</tbody>
</table>

4.6. Sosyal Uyum Kapsamında Yapılanların Değerlendirilmesi

Sosyal uyum başlığı altında yer alan 1. ve 2. kriterlerdeki azınlık ve farklı etnik kökene sahip insanlarla ilgili kente bir ayrımcılık olmadığı yerel halk ile yapılan görüşmeler sonucunda anlaşılımıştir. Gençlerle yönelik olarak hazırlanan proje içerisinde futbol ve basketbol sahaları, koşu yolu ve gençlik merkezi gibi alanlar bulunmaktadır. Çocuk bakımı ile desteklenen, Ankara ilinde örnek bir uygulama olan kreş ve anaokulu kompleksinde çocuk sanatı atölyesi ve mini sera yapımı da düşünülmektedir (Güdül Yavaş Şehir Başvuru Dosyası, 2019: 22).

Sonuç olarak bu aşık altunda yer alan 11 kriterden 6 tanesinin (1, 2, 4, 8, 9 ve 11. kriterler) eksiksiz yerine getirildiği; 2 kriterle (5. ve 10. kriterler) ilgili herhangi bir girişimde bulunmadığı tespit edilmiştir.

Tablo 6: Sosyal Uyum Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>6.</th>
<th>Sosyal Uyum</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.</td>
<td>Azınlıklara yönelik ayrımcılığa karşı çalışmalar</td>
<td>+</td>
</tr>
<tr>
<td>6.2.</td>
<td>Farklı etnik kökene sahip insanlar için aynı mahalledede yaşamasi</td>
<td>+</td>
</tr>
<tr>
<td>6.3.</td>
<td>Engelli kişilerin entegrasyonu</td>
<td>↓</td>
</tr>
<tr>
<td>6.4.</td>
<td>Çokук bakımı ile desteklenmesi</td>
<td>+</td>
</tr>
<tr>
<td>6.5.</td>
<td>Genç neslin istihdam durumü</td>
<td>↓</td>
</tr>
<tr>
<td>6.6.</td>
<td>Yoksulluk</td>
<td>↓</td>
</tr>
<tr>
<td>6.7.</td>
<td>Toplumsal ortaklıklar/sivil toplum kuruluşlarının mevcudiyeti</td>
<td>↓</td>
</tr>
<tr>
<td>6.8.</td>
<td>Farklı kültürlerin entegrasyonu</td>
<td>+</td>
</tr>
<tr>
<td>6.9.</td>
<td>Politikaya katılım</td>
<td>+</td>
</tr>
<tr>
<td>6.10.</td>
<td>Belediyenin kamu konut yatırımı</td>
<td>-</td>
</tr>
<tr>
<td>6.11.</td>
<td>Gençlik faaliyetlerinin yürütüldüğü bir alanların ve bir gençlik merkezinin mevcudiyeti</td>
<td>+</td>
</tr>
</tbody>
</table>

4.7. Ortaklıklar Kapsamında Yapılanların Değerlendirilmesi

Educa Life Eğitim, Danışmanlık Proje Ltd. Şti. firma yetkilisinden alınan bilgilere göre bu başlık altında yer alan kriterler için yavaş şehir ve yavaş beslenme tanımıının yaygınlaştırılması amacıyla broşürler hazırlanarak ilçedeki tüm resmi kurum, kuruluş, sivil toplum kuruluşları, esnaf ve halka dağıtıldığı ve Yavaş Şehir tanıtımı için kurulan web sayfasında yavaş beslenme aktiviteleri ile kampanyaları yayınlandığı belirtilmiştir.

Tablo 7: Ortaklıklar Kapsamında İncelenmesi.

<table>
<thead>
<tr>
<th>7.</th>
<th>Ortaklıklar</th>
<th>Değerlendirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.</td>
<td>Slowfood aktiviteleri ve kampanyalar için destek</td>
<td>+</td>
</tr>
<tr>
<td>7.2.</td>
<td>Doğal ve geleneksel yiyecekleri Slowfood veya diğer kurumlar ile destekleme</td>
<td>↓</td>
</tr>
<tr>
<td>7.3.</td>
<td>Eşleştirme projelerini destekleme ve geliştirme olan ülkelerin Cittaslow ve Slowfood felsefelerinin yayılmasını sağlayacak şekilde geliştirmeleri için işbirliği yapmak</td>
<td>-</td>
</tr>
</tbody>
</table>
5. SONUÇ VE ÖNERİLER

- Bisiklet yolları ve bisiklet park yerlerine yönelik çalışmaların yapılması,
- Özel taşıt kullanımına alternatif olarak eko ulaşım planlanması,
- Kamusal sürdürülebilir kentsel planlamının teşviki (Pasif ev vb.),
- Otel kapasitesinin arttırılması.

KAYNAKÇA

- http://www.cittaslow.org, erişim tarihi: 30.06.2019
- http://www.cittaslowturkiye.org/cittaslow-turkiye.html, erişim tarihi: 01.06.2019
- http://www.gudul.gov.tr/genel-bilgiler, erişim tarihi: 15.05.2019
- http://www.sakinsehirgudul.net/, erişim tarihi: 15.05.2019
- https://www.slowfood.com/, erişim tarihi: 30.06.2019
- https://gudul.bel.tr/, erişim tarihi: 15.05.2019
- www.ankarakulturturizm.gov.tr, erişim tarihi: 30.05.2019
- http://www.gudul.gov.tr/gudul, erişim tarihi: 15.05.2019
Yapılan Görüşmeler

- Educa Life Eğitim, Danışmanlık Proje Ltd. Şti. firma yetkilisi ve Güdül Belediyesi Yavaş Şehir danışmanı, V. AKDEMİR, 05.05.2019.
- Güdül Kaymakamı, D. Dinç, 10.05.2019.
- Güdül İlçe Tarım ve Orman Müdürü, H. Tanrıseven, 10.05.2019
- Güdül İlçe Tarım ve Orman Müdürlüğü çalışanı, K. Yıldız, 10.05.2019
- Güdül Belediyesi çalışanı, T. Buğdaycı, 10.05.2019
- TOSYÖV (Türkiye Küçük ve Orta Ölçekli İşletmeler Serbest Meslek Mensupları ve Yöneticiler Vakfı) Yönetim Kurulu Başkanı, N. Kuleyin, 10.05.2019
YIELD AND YIELD COMPONENTS OF SOME COMMON VETCH (Vicia sativa L.)
VARIEITES IN ECOLOGICAL CONDITIONS OF CEYLANPINAR

Yakup ALKIŞ
Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa
Mustafa OKANT
Harran Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü (Sorumlu yazar)
mokant@yahoo.com

ABSTRACT
This study was conducted to determine yield and yield components of common vetch (Vicia sativa L.) varieties grown in semi-arid ecological conditions in southeastern Turkey. Field experiment was established at Ceylanpinar district in Şanlıurfa province, and carried out in winter season of 2014-2015. Experimental layout was a complete randomized block design with three replications. Registered 11 common vetch varieties were used in the experiment. All traits investigated, except for pod numbers per plant, were significantly (P<0.05) different among the varieties. The results indicated that plant height ranged from 77.47-91.77 cm, fresh forage yield from 1749-2701 kg da⁻¹, dry forage yield from 408.1-643.6 kg da⁻¹, crude protein ratio from 16.46-24.22%, pod numbers per plant from 17.50-21.70 pods, seed numbers per pod from 6.57-5.43, seed yield from 130.2-186.7 kg da⁻¹, 1000-seed weight from 45.77-63.20 g. Green forage yield, dry forage yield and seed yield characteristics, which are the most important traits for common vetch, of Ürkmez variety was superior compared to the other 10 common vetch varieties. However, the results revealed that Özveren variety came to the fore in terms of plant height and 1000-seed weight in Ceylanpinar ecological conditions.

Keywords: Common vetch, fresh forage yield, dry forage yield, seed yield, crude protein ratio

1. INTRODUCTION
Vetch (Vicia sativa L.) is an annual legume forage crop that is cultivated in plant-animal production systems to obtained green or dry hay and grain; thus, is widely used for feeding the livestock in many parts of the world (Ramos et al., 2000; Açıkgöz, 2001; Cabellero et al., 2001; Chowdhurry et al., 2001; Han, 2010). Vetch is of great importance in providing quality forage and concentrated feed required by animal husbandry in Southeast Anatolia Region of Turkey (Tosun, 1974). The vetch has about 150 species in the world and the most widely cultivated species is common vetch (Vicia sativa L.). Climbing growth nature and high protein content of common vetch are the main reasons why many farmers extensively prefer vetch in intercropping with cereals (Dhima et al., 2007).

Various studies have been conducted to investigate the yield and yield components of the common vetch, an annual legume forage crop. Seydoşoğlu (2014) reported that the plant height of common vetch was between 33.9 and 62.6 cm, green hay yield was between 1522.0 and 3232.3 kg da⁻¹, dry hay yield between 308.0 and 919.5 kg da⁻¹ and seed yield 92.2 and 293.7 kg da⁻¹. Kökten et al. (2018) reported that the average plant height, green hay yield and dry hay yield of bitter vetch, which is an annual legume forage crop was 31.1 cm, 412.8 kg da⁻¹ and 95.7 kg da⁻¹. Similarly, Kökten et al. (2019) reported that the average crude protein content in bitter vetch genotypes was 7.3%.

Most of the pastures in Southeastern Anatolia region are included in the weak pasture class (Seydoşoğlu ve ark. 2018; Seydoşoğlu ve Kökten, 2019), reported that forage crops are important.

This study was carried out to investigate the production potential and yield components of some commercial common vetch varieties breed in recent years in Ceylanpinar district of Sanliurfa province, Turkey.
2. MATERIAL AND METHODS

This research was conducted in a farmer field located at Yüksektepe village of Ceylanpinar district, Sanliurfa province in 2014-2015 production season. The registered Alper, Cumhuriyet-99, Selçuk-99, Özveren, Ürkmez, Yücel, Görkem, Albayrak, Doruk, Bakır-2001 and Alınoğlu-2001 common vetch varieties were used as materials.

Soil samples were collected from 0-30 cm depth of the plots to determine some chemical characteristics of the experimental field. The analysis of soils revealed that soil in the experimental field was very calcareous (12.31%), high in available potassium (316 kg ha⁻¹), low in organic matter (1.49%) and very low in plant-available phosphorus (50.4 kg ha⁻¹) (Ülgen and Yurtseven, 1995). Total annual rainfall during vegetation period of common vetch was slightly higher than the average for long-term. Meteorological data indicated a very high rainfall (100.8 mm) in February 2015. The average monthly temperature and relative humidity during the vegetation period were close to the average for long term (Table 1). Precipitations in April and May, which were flowering and broad bean periods were 24.3 and 10.3 kg m⁻¹, respectively. Precipitation during this period was not adequate, therefore plants were irrigated twice at field capacity with a sprinkler system.

Table 1. Meteorological data of the experiment site during experiment and long-term (Anonymous, 2018)

<table>
<thead>
<tr>
<th>Time</th>
<th>Average temperature (ºC)</th>
<th>Relative humidity (%)</th>
<th>Precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2014</td>
<td>12.1</td>
<td>53.9</td>
<td>78.6</td>
</tr>
<tr>
<td>November Long-Term</td>
<td>12.8</td>
<td>59.9</td>
<td>44.2</td>
</tr>
<tr>
<td>December 2014</td>
<td>9.5</td>
<td>74.9</td>
<td>55.4</td>
</tr>
<tr>
<td>December Long-Term</td>
<td>7.5</td>
<td>69.9</td>
<td>78.7</td>
</tr>
<tr>
<td>January 2015</td>
<td>6.2</td>
<td>65.6</td>
<td>82.5</td>
</tr>
<tr>
<td>January Long-Term</td>
<td>5.6</td>
<td>70.3</td>
<td>84.8</td>
</tr>
<tr>
<td>February 2015</td>
<td>7.6</td>
<td>74.3</td>
<td>100.8</td>
</tr>
<tr>
<td>February Long-Term</td>
<td>7.0</td>
<td>66.9</td>
<td>71.0</td>
</tr>
<tr>
<td>March 2015</td>
<td>11.7</td>
<td>58.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Long-Term</td>
<td>10.9</td>
<td>60.4</td>
<td>66.1</td>
</tr>
<tr>
<td>April 2015</td>
<td>15.7</td>
<td>49.7</td>
<td>24.3</td>
</tr>
<tr>
<td>March Long-Term</td>
<td>16.2</td>
<td>56.2</td>
<td>49.2</td>
</tr>
<tr>
<td>May 2015</td>
<td>22.8</td>
<td>38.0</td>
<td>10.3</td>
</tr>
<tr>
<td>May Long-Term</td>
<td>22.1</td>
<td>44.9</td>
<td>29.1</td>
</tr>
<tr>
<td>June 2015</td>
<td>27.7</td>
<td>35.3</td>
<td>0.7</td>
</tr>
<tr>
<td>June Long-Term</td>
<td>28.1</td>
<td>32.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>

3. METHODS

The experiment was established in the last week of December. The experimental was laid out according to a randomized block design with 3 replications. Each plot consisted of 6 rows with 8 m length and 20 cm interrow spacing. The amount of seed used for each variety was determined by considering 1000-grain weights (8-10 kg da⁻¹). The plot size was 1.2m×8m = 9.6 m² and treatments were separated by 1 m buffer zone from each other. The first and the last rows of each plot and the first and last 50 cm of each row were not included in the harvest and observations to eliminate the side effect. Half of each plot (2 rows) was harvested for observations on hay yield and the other half (2 rows) was harvested for observations on seed yield. Basal fertilizer as 30 kg pure nitrogen per hectare and 60 kg pure phosphorus per hectare was applied at seed sowing (Çil et al., 2004; Yücel et al., 2008). During the growing period of vetch, irrigation (twice), hoeing and other necessary maintenance operations were performed. Green hay was harvested at 50% flowering stage and the grain harvest was performed by hand at the full ripening stage when the lower pods become brown color (Sahar, 2006).

Plant length was determined by the average of the distance between the soil surface and the last bud of 10 plants randomly selected from each plot. The average values were recorded by counting the number of pods and number of seeds per 10 plants selected from each plot. The yield of green hay harvested from each plot was determined by weighing the weights of green hay at field conditions. The yield values determined per plot were converted to yield per decare. A portion of (0.5 kg) green hay harvested from each plot was dried in an oven at 70 ºC for 48 hours (Anonymous, 2016). The dried hay samples were weighed and dry hay yields of different vetch varieties were determined. The dried
hay yield values determined per plot were converted to yield per decare. Plant samples taken from dry hay were ground in a mill with a sieve diameter of 1 mm and used for analysis. The raw ash content of the feeds was determined by burning hays in an ash oven at 550°C for 8 hours. The Kjeldahl method was used to determine the nitrogen (N) content of the samples. The crude protein ratio was calculated by multiplying the N ratio by 6.25 (AOAC, 1990).

4. STATISTICAL ANALYSIS
The differences in properties investigated among the vetch varieties were assessed by one-way analysis of variance (ANOVA). Treatment means of varieties were separated by using the least significant test (LSD) at P<0.05 level of confidence. All statistical analyses were carried out using the SPSS 20.0 software.

![Figure 1. The study area Ceylanpinar district of Sanliurfa (in Turkey)](image)

5. RESULTS AND DISCUSSION
The differences in plant size, yields of green hay, dry hay and seed were statistically significant among vetch varieties (Table 2). Mean plant height varied between 77.47 cm and 91.77 cm. The lowest plant height was recorded in Alınoğlu-2001 variety, whereas the difference in plant height among the rest of 10 vetch varieties was not statistically significant.

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Plant height (cm)</th>
<th>Green hay yield (kg da⁻¹)</th>
<th>Dry Hay yield (kg da⁻¹)</th>
<th>Seed yield (kg da⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alper</td>
<td>84.53ab₆</td>
<td>1987.08b-e</td>
<td>506.32bc</td>
<td>184.45a</td>
</tr>
<tr>
<td>Cumhuriyet-99</td>
<td>91.70a</td>
<td>2298.0a-c</td>
<td>515.03b</td>
<td>172.78ab</td>
</tr>
<tr>
<td>Selçuk-99</td>
<td>84.57ab</td>
<td>1855.3c-e</td>
<td>408.97d</td>
<td>144.22bc</td>
</tr>
<tr>
<td>Ömeren</td>
<td>91.77a</td>
<td>2457.67ab</td>
<td>499.29bc</td>
<td>184.11a</td>
</tr>
<tr>
<td>Albayrak</td>
<td>84.53ab</td>
<td>2054.00b-e</td>
<td>463.53b-d</td>
<td>175.33ab</td>
</tr>
<tr>
<td>Göürkem</td>
<td>79.63ab</td>
<td>2124.67b-e</td>
<td>472.20b-d</td>
<td>136.33ab</td>
</tr>
<tr>
<td>Alınoglu-2001</td>
<td>77.47b</td>
<td>1749.00e</td>
<td>422.60cd</td>
<td>130.22c</td>
</tr>
<tr>
<td>Doruk</td>
<td>83.83ab</td>
<td>1805.00d</td>
<td>454.53b-d</td>
<td>176.89ab</td>
</tr>
<tr>
<td>Urkmez</td>
<td>89.60a</td>
<td>2701.00a</td>
<td>643.56a</td>
<td>186.67a</td>
</tr>
<tr>
<td>Bakır-2001</td>
<td>83.93ab</td>
<td>2196.00b-e</td>
<td>516.65b</td>
<td>172.33ab</td>
</tr>
<tr>
<td>Yuçel</td>
<td>89.60a</td>
<td>2294.67a-d</td>
<td>503.62bc</td>
<td>181.56a</td>
</tr>
<tr>
<td>Mean</td>
<td>85.56</td>
<td>2138.39</td>
<td>491.40</td>
<td>167.71</td>
</tr>
<tr>
<td>LSD</td>
<td>8.23**</td>
<td>491.22**</td>
<td>84.94**</td>
<td>14.18**</td>
</tr>
</tbody>
</table>

& Different letters in a column indicate significant differences (P<0.05) among vetch varieties, ** Significant at P≤0.01.

The mean green hay yield ranged between 1749.00 and 2701.00 kg da⁻¹. The highest green hay yield (2701.00 kg da⁻¹) was obtained with Urkmez variety, however, the difference between Urkmez, Özveren, Cumhuriyet-99 and Yuçel varieties were not statistically significant. The lowest green hay
yield was recorded in Alınoğlu-2001 variety. The mean yields of common vetch varieties ranged from 408.07 to 643.56 kg da\(^{-1}\). The highest hay yield was obtained from Ürkmez cultivar while the lowest hay yield was recorded in Selçuk-99 cultivar (Table 2). The mean grain yield of the varieties ranged from 130.22 kg da\(^{-1}\) to 186.67 kg da\(^{-1}\). Ürkmez, Alper, Cumhuriyet, Özveren, Albayrak, Doruk, Copper and Yucel varieties had higher grain yield compared to the grain yields of other varieties. The grain yields of Görkem and Alınoğlu-2001 varieties were lower than the other varieties (Table 2).

Crude protein ratio and the number of seeds per pod among common vetch varieties were significantly different, however, the difference in the number of pods per plant among vetch varieties was statistically insignificant. The mean crude protein ratio ranged from 16.46 to 24.22%. The highest protein ratio among the common vetch varieties was obtained in Albayrak cultivar with 24.22%, while the lowest protein ratio was recorded in Cumhuriyet-99 cultivar with 16.46% (Table 3).

The mean number of seeds per pod among common vetch varieties ranged from 5.43 to 6.57. Yücel, Özveren and Cumhuriyet-99 varieties were included in a group with the highest number seeds per pod while the lowest number of seeds per pod was recorded in Albayrak variety. Several studies have been conducted to investigate the characteristics of common vetch and other legume forage crops and reports have been published. Seydoşoğlu et al. (2015) conducted a study on grasspea (Lathyrus sativus L.) varieties and reported that plant height varied between 39.25 and 59.17 cm, green hay yield was between 1379.50 and 3154.17 kg da\(^{-1}\), hay yield was between 330.67 and 767.38 kg da\(^{-1}\) and seed yield was between 181.00 and 269.83 kg da\(^{-1}\).

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Crude protein ratio (%)</th>
<th>Number of seed per pod (piece)</th>
<th>Number of pods per plant (piece)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alper</td>
<td>19.42c</td>
<td>5.53de</td>
<td>19.6</td>
</tr>
<tr>
<td>Cumhuriyet-99</td>
<td>16.46d</td>
<td>6.20a-c</td>
<td>20.1</td>
</tr>
<tr>
<td>Selçuk-99</td>
<td>20.07bc</td>
<td>5.57de</td>
<td>21.3</td>
</tr>
<tr>
<td>Özveren</td>
<td>20.14bc</td>
<td>6.43ab</td>
<td>20.8</td>
</tr>
<tr>
<td>Albayarck</td>
<td>24.22a</td>
<td>5.43c</td>
<td>21.7</td>
</tr>
<tr>
<td>Görkem</td>
<td>21.68b</td>
<td>6.00b-d</td>
<td>20.3</td>
</tr>
<tr>
<td>Alınoğlu-2001</td>
<td>16.58d</td>
<td>5.83c-e</td>
<td>20.8</td>
</tr>
<tr>
<td>Doruk</td>
<td>20.63bc</td>
<td>5.77c-e</td>
<td>19.1</td>
</tr>
<tr>
<td>Ürkmez</td>
<td>20.13bc</td>
<td>5.63de</td>
<td>21.7</td>
</tr>
<tr>
<td>Bakır-2001</td>
<td>19.89bc</td>
<td>5.90c-e</td>
<td>21.2</td>
</tr>
<tr>
<td>Yücel</td>
<td>19.71c</td>
<td>6.57a</td>
<td>17.5</td>
</tr>
<tr>
<td>Mean</td>
<td>19.90</td>
<td>5.90</td>
<td>20.4</td>
</tr>
<tr>
<td>LSD</td>
<td>1.84**</td>
<td>0.53</td>
<td>Non-significant</td>
</tr>
</tbody>
</table>

& Different letters in a column indicate significant differences (P<0.05) among vetch varieties, ** Significant at P≤0.01.

Albayrak et al. (2005) reported that the average seed yield of some common vetch genotypes was 122.3 kg da\(^{-1}\) and the number of seeds per pod was 6.17. Kaplan (2013) found that ADF ratio in some common vetch genotypes ranging between 26.28 and 45.43%, NDF rate was between 32.32 and 49.56%, green hay yield was between 1212.1 to 4386.0 kg da\(^{-1}\), dry hay yield was between 213.7 to 709.6 kg da\(^{-1}\) and crude protein ratio was between 17.21 and 24.76%. Yücel et al. (2012) reported that crude protein ratio of vetch genotypes grown under different ecologies varied between 14.68 and 24.60%.

The results obtained in this study show similarities and differences with the findings of the aforementioned studies. Dhima et al. (2007) indicated that types of cultivars, seeding ratio and many other factors significant impact on growth and performances of crops grown in a region. The differences in finding can be attributed to the materials used in experiments, sowing times and ecological conditions of the experimental sites.
6. CONCLUSION
Yield and yield characteristics of some common vetch (*Vicia sativa* L.) varieties grown as winter intermediate crop in Southeastern Anatolia Region, Turkey were determined. Green and dry hay yields Ürkmez variety were superior to other varieties. Similarly, grain yields of Alper, Cumhuriyet, Özveren, Albayrak, Doruk, Bakır and Yücel varieties in addition to Ürkmez variety were higher compared to the rest of the vetch varieties. The results of the study revealed that superior varieties obtained in this research should be preferred for common vetch cultivation in semi-arid environmental conditions such as Ceylanpinar district and similar ecologies.

ACKNOWLEDGEMENT
This study has been prepared from a Master’s Thesis (No: 54033) in Harran University, Turkey.

REFERENCES

IMPACT OF RADIO PROPAGATION MODELS ON A CROSS-LAYER PROTOCOL TO PROVISION QoS IN WIRELESS MULTIMEDIA SENSOR NETWORKS

Alper K. DEMIR
Assist. Prof. Dr. Dept. of Computer Engineering Adana Alparslan Turkes Science and Technology University, Adana, Turkey. Email: akdemir@atu.edu.tr

ABSTRACT
Wireless multimedia sensor networks (WMSNs) depend upon novel Quality of Service (QoS) protocols for real-time and multimedia applications because of having limited resources and inherent features. In this paper, we examine the impact of radio propagation models, namely Friis Free Space, 2 Ray Ground and Hata Urban, on a cross-layer protocol, XLCP, to offer QoS in Wireless Multimedia Sensor Networks. XLCP, unifying network routing and MAC functionalities, is a cross-layer protocol that enables scalable service differentiation. Performance results indicate that radio propagation models influence QoS level in simulations for XLCP protocol. As far as we know, both exploring the impact of physical layer propagation model on the higher layer protocols and development of physical layer aware protocols are still an unexplored area.

Index Terms: Wireless multimedia sensor networks, multimedia, QoS, radio propagation model.

Introduction
Technological advances in hardware devices such as CMOS cameras and microphones have enabled low cost curtailed embedded sensor devices equipped with video and audio assemble components [1], [2]. Networking such hardware devices gathering multimedia content from physical environment is named as Wireless Multimedia Sensor Networks (WMSNs) [3], [4]. In order to successfully run WMSN applications, a concrete degree of Quality of Service (QoS) guarantees, such as reliable and timely transmission of multimedia content, is expected from the WMSN. QoS describes satisfaction level of application concerns from the underlying communication network or discerned traffic quality level that the underlying network gives to an application. For having constrained resources such as memory, storage, processing and bandwidth, WMSNs indicate considerable QoS provisioning challenge. On the other hand, protocols developed for traditional wireless networks and ad hoc networks are not applicable to WMSNs. Therefore, brand-new generations of protocols are required for WMSNs. Increasing number of WMSN applications, such as mission critical target tracking in battlefields and real-time emergency response will become reality once challenges are tackled.

Traditional layered wireless protocols are inadequate for WMSNs since layered design inherits redundancy and common dependencies exist in different layers. Thus, cross-layer design approaches have emanated to address performance enhancement of WMSN protocols [5], [6]. In order to meet QoS requirements of WMSN applications, cross layer design is very crucial for improving the performance and efficiency of protocols. In our previous studies, we presented a cross-layer communication protocol, XLCP [7] that unifies routing and MAC functionalities and enables scalable service differentiation in order to meet QoS requirements of WMSN applications. XLCP is also tested and confirmed in an image, voice and activity transmission applications [8]–[10].

The performance of a wireless protocol is affected by the underlying radio propagation model. The number of nodes within a collision domain that is a crucial parameter for contention and interference is obtained by the radio propagation model [11]. Consecutively, ability of transmitting a packet to a node is directly affected where QoS metrics, such as reliability, throughput and delay, results in different figures. In this paper, the impact of radio propagation models on XLCP to provision QoS in WMSNs is examined.

Related Work
There is not much research on how radio propagation models impact on the performance of the protocols in wireless multimedia sensor networks (WMSNs). There has been some research in wireless ad hoc networks [11], [12] and sensor networks [13]–[15]. The impact of acoustic
propagation models on the higher layer protocols are investigated in the scope of underwater wireless sensor networks [16]. The literature review shows that the influence of propagation models on the performance of the WMSN are not investigated deeply yet. This gap within the research inspired this work.

XLCP: A Xcross-Layer Communication Protocol for Service Differention

XLCP unifies MAC and Routing protocol functionalities into a single module [7]. XLCP is a fairly simple protocol because of resource limitation of sensor nodes. It is completely stateless, based on localized packet forwarding, and assumes location awareness. Each node is required to find out its location relative to sink. Localized packet forwarding decisions are determined by a cost function leveraging feedback on the level of energy, data rate, channel quality and available buffer length in order to determine the best next hop. During CSMA/CA-like MAC operation, nodes randomly access to channel. XLCP also utilizes back-off interval, inter frame spacing and MAC frame retransmission counts. By differentiating such parameters and utilizing the cost function, QoS (i.e. reliability, throughput, delay, reliability, or combinations) differentiation is achieved.

Every sensor nodes achieve distributed duty cycling. First of all, all sensor nodes reside in IDLE state where they listen to the communication channel. Upon detecting a communication over the channel, a sensor node sets the channel busy until timer expires. Whereas a packet associated to class Q is determined and the channel is available, a sensor node sets itself to RTSI state to send an RTS-I packet. During RTSI state, the CSMA_{RTSI} algorithm similar to CSMA/CA method with parameter values depending upon QoS class of the packet is applied by a sensor node. RTS-I packets are investigation packets to determine the quality level of the next forwarding node. Such different QoS parameters results with service differentiation. Subsequently, a sensor node broadcasts an RTS-I packet and it transfers into WCTSQ state to receive for a CTS-Q packet. Then, it collects all CTS-Q packets associated with the packet for WCTS\textsuperscript{Q_{0}} period.

When a sensor node receives a broadcast RTS-I packet, the sensor node transfers into CTSQ state and determines the QoS-cost value that will be inserted into uniccast CTS-Q packet provided that the sensor node is in IDLE state and is closer to sink within a given threshold. The QoS-cost value is determined by a cost function based on SNR, remaining energy, data rate and buffer length. CTS-Q packets carry out quality level of a node, cost value, computed by a cost function. Cost value is used as one-hop feedback control in routing decisions. During CTSQ state, the sensor node performs \textsc{CSMA}_{CTSQ} algorithm akin to CSMA/CA approach with parameter values assigned to QoS class of the packet.

The sensor node collects the CTS-Q packets during WCTS\textsuperscript{Q_{0}} period to select the best candidate node that send the highest QoS-cost value in CTS-Q packet to transmit the data packet by getting into DATA state. In DATA state, the sensor nodes send the data packet to a relay node that transmitted the highest QoS-cost value injected into CTS-Q packet. In order to send data packet to candidate relay node, sensor node applies \textsc{CSMA}_{DATA} algorithm. Immediately, if acknowledgement is enabled, the sensor node gets into WACK state to receive an acknowledgement packet. Otherwise, it gets into IDLE state. When a sensor node receives a packet, it updates received SNR value of related packet by applying exponential weighted moving average.

Radio Propagation Models

We examine the impact of radio propagation models, Friis Free Space, 2 Ray Ground and Hata Urban, on a cross-layer protocol, XLCP, to provision QoS. For Friis, the received power by an antenna in dBm is given as:

\[
Pr = Pt + Gt + Gr - (32.46 + 20 \times \log_{10}B + 20 \times \log_{10}d) \quad (1)
\]

where B is in mega hertz, and d is in kilo meters.

For 2 Ray Ground, the received power by an antenna in dBm is given as:

\[
Pr = Pt + Gt + Gr - (20 \times \log_{10}B + 20 \log_{10}1.5 - 40 \times \log_{10}d) \quad (2)
\]
where \(d \) is in meters.

For Hata Urban, the received power by an antenna in dBm is given as:

\[
PL_{11} = (1.1 \times \log_{10} B - 0.7) \times 1.5 - (1.56 \times \log_{10} B - 0.8)
\]

(3)

where \(d \) is in meters.

\[
PL_1 = 69.55 + (26.16 \times \log_{10} B - (13.82 \times \log_{10} 50) - PL_{11})
\]

(4)

\[
PL_2 = 44.9 - 6.55 \times \log_{10} 50
\]

(5)

\[
Pr = Pt + Gt + Gr - (PL_1 + PL_2)
\]

(6)

where \(B \) is in mega hertz.

Performance Evaluation

In sequence to gain insights on the impact of radio propagation models on XLCP protocol, we carried out detailed simulations on an in-house developed simulator in Matlab environment [17]. The NS-2 simulator [18], [19] is used as a reference for implementing XLCP in Matlab language. Table I represents the general simulation environment parameters.

<table>
<thead>
<tr>
<th>Sensor Network Terrain Area</th>
<th>40m (\times) 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Number and Placement</td>
<td>48 Uniform</td>
</tr>
<tr>
<td>Sink Coordinate</td>
<td>(0,20) m</td>
</tr>
<tr>
<td>Simulation time</td>
<td>10 sec</td>
</tr>
<tr>
<td>Number of Events</td>
<td>2</td>
</tr>
<tr>
<td>Event Impact Range</td>
<td>8 m</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 Mbps</td>
</tr>
<tr>
<td>Radio Range</td>
<td>10 m</td>
</tr>
<tr>
<td>Transmit (Tx) Energy</td>
<td>24.75 mW</td>
</tr>
<tr>
<td>Receive (Rx) Energy</td>
<td>13.5 mW</td>
</tr>
<tr>
<td>Idle Energy</td>
<td>1.45 mW</td>
</tr>
<tr>
<td>Sleep Energy</td>
<td>15 (\mu)W</td>
</tr>
<tr>
<td>Total Buffer Length</td>
<td>100 packets</td>
</tr>
<tr>
<td>Max Retransmission</td>
<td>8 times</td>
</tr>
<tr>
<td>Scheduler</td>
<td>FIFO</td>
</tr>
<tr>
<td>Data Packet Length</td>
<td>100 bytes</td>
</tr>
<tr>
<td>RTS-I, CTS-Q and ACK Packet Length</td>
<td>20 bytes, 20 bytes, 15 bytes</td>
</tr>
</tbody>
</table>

Table I: WSMN Simulation Parameters
In simulations, 48 sensor nodes are randomly deployed in a 40m×40m sensor network field. It is presumed that the nodes and sink are stationary and the network does not have any vacated region. Constantly, the sink is located at coordinates (20,0)m. In each simulation, concurrently, 2 events occur. At coordinates (10,30)m, the first event is fired up and at coordinates (30,30)m, the second event is fired up. The impact of an event is 8m. Figure 1 represents an example sensor network topology.

Only 2 QoS classes are specified in simulations. Source sensor nodes around the impact range of the events generate data packets to be delivered to the sink node. In other words, 2 event packets are generated at each certain period around the event impact range. If a sensor node has not got available buffer, it drops the generated or forwarded packets. Substantial XLCP parameters for both Q=1 and Q=2 QoS classes are presented at Table II. Duty-cycling is not applied in simulations (β_{duty-cycle}^{all-Q} = 1). In all simulations, it is assumed that the channel has constant bit error rate (BER) of 10^{-8}. Each simulation is run for 10 sec. Moreover, the average of 5 trials is run with different network topologies to evaluate the performance of simulations. In simulations, related XLCP parameters are conformed to the IEEE 802.15.4 parameters. Unless otherwise specified, all simulations are rigorously run with these parameters.

Table II: Simulation Parameters used in XLCP (X=rtsi, ctsq, data, ack)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{duty-cycle}^{all-Q}$</td>
<td>1</td>
</tr>
<tr>
<td>$\beta_{minNB-x}^{Q}$</td>
<td>4</td>
</tr>
<tr>
<td>$\beta_{maxNB-x}^{Q}$</td>
<td>10</td>
</tr>
<tr>
<td>$\beta_{minBE-x}^{Q}$</td>
<td>3</td>
</tr>
<tr>
<td>$\beta_{maxBE-x}^{Q}$</td>
<td>8</td>
</tr>
<tr>
<td>$\beta_{minCW-x}^{Q}$</td>
<td>1</td>
</tr>
<tr>
<td>$\beta_{snr-x-c}^{Q}$</td>
<td>0.2</td>
</tr>
<tr>
<td>$\beta_{ACK-enable}^{Q}$</td>
<td>TRUE</td>
</tr>
</tbody>
</table>
Fig. 1: An Example Sensor Network Topology

We explored the subsequent QoS performance metrics in performance evaluation:

- **Per-packet Energy Overhead**: This metric represents the consumed total energy of a unique data packet received at the sink.
- **Event Miss Ratio**: This metric represents the proportion of total lost data packets to total generated event data packets.
- **Average Delay**: This metric represents the average of end-to-end time delay of all data packets received at sink.
- **Event Reliability**: This metric represents the proportion of total received unique data packets at the sink to total number of generated data packets at source sensor nodes.
- **Sensed Event Reliability**: This metric represents the proportion of total received unique data packets at the sink to total number of generated and placed into the buffer of a source node data packets at source sensor nodes.
- **Throughput** is the number of bits received at the sink per second.

In Figure 2 Per-packet Energy Overhead, Event Miss Ratio and Average Delay graphics are presented. For Per-packet Energy Overhead in Joules, Friis and Hata Urban radio propagation models show similar linear constant function behavior.
For Friis and Hata Urban radio propagation models, increasing event frequency do not change Per-packet Energy Overhead. Hata Urban results with slightly lower Per-packet Energy Overhead than that of Friis. 2 Ray Ground radio propagation model shows variable function behavior for Per-packet Energy Overhead. It is obvious that when event frequency increases, Event Miss Ratio also gets increased. All Event Miss Ratio graphics are exponential up to a certain event frequency, and then logarithmic. However, Hata Urban radio propagation model results with lower Event Miss Ratio than that of Friis and 2 Ray Ground models. And, 2 Ray Ground radio propagation model results with the highest Event Miss ratio. It is clear that when event frequency increases, Average Delay also gets increased gradually. All Average Delay functions are in part logarithmic. Hata Urban radio propagation model results with lower Average Delays than that of Friis and 2 Ray Ground models. And, 2 Ray Ground radio propagation model results with the highest Average Delay.

In Figure 3, Reliability, Sensed Event Reliability and Throughput graphics are presented. For Reliability, Friis, 2 Ray Ground and Hata Urban radio propagation models show similar negative exponential function behaviour. Hata Urban results with the best Reliability, and 2 Ray Ground results with the worst Reliability. Friis, 2 Ray Ground and Hata Urban radio propagation models
Fig. 3: Reliability, Sensed Event Reliability, Throughput Graphics

show similar negative exponential function behavior for Sensed Event Reliability. Hata Urban results with the best Sensed Event Reliability, and 2 Ray Ground results with the worst Sensed Event Reliability. For Throughput, again, 2 Ray Ground ends up with the worst results, and Hata Urban ends up with the best results.

Conclusion
Evaluating performance of the protocols on top of physical layer propagation models is a frequently neglected research area in WMSN. However, accurate knowledge of propagation models assists the progress of more efficient, effective and robust network protocols. This study investigates the effect of propagation model on the performance of a XLCP communication protocol that is developed for the needs of WMSNs. The simulations show that physical layer propagation model impacts the performance of XLCP. This implies that superior protocols can be designed while considering physical layer propagation model.

REFERENCES

